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1. Introduction



短期間の間にSMBHを作るためには  
より重い種BHを祖とした方が好都合.

超巨大ブラックホール(SMBH) at z > 6

•z > 6のquasarで発見された 
超巨大ブラックホール(SMBH)

その起源は何であるか？

Fan 2006 etc
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ones showing opposite peak and line base displacement in radial
velocity (Shen and Loeb, 2010), but altogether they account for no
more than a few percent of quasars.

13. Toward higher and higher redshifts: the evidence for a
turnover

FWHM Hb measures can provide good MBH estimates out to z!
3.8. 8 m-class telescopes yield high s/n measures for the high lumi-
nosity tail of the quasar optical luminosity function. Sampling over
a wider part of the optical luminosity function (down to Seyfert 1
luminosities (MV ! -23) becomes possible with the next generation
of large telescopes). BH mass estimates beyond z ! 3.8 or simply
larger samples beyond z ! 0.7 requires use of Hb surrogate lines.
The two most used surrogates are MgIIk2800 and CIVk1549.
CIVk1549 cannot be trusted but MgIIk2800 may be able to serve
as a surrogate virial estimator for the highest redshift quasars

currently known. Spectra can be obtained for z ! 6 quasars in the
K band (Kurk et al., 2007).

The best MBH estimates out to z ! 4 show no evidence of a turn-
over which would reflect the epoch when the largest black holes
were still growing. Instead we see constant MBH upper limit near
logMBH ! 9.7 if we trust in part (which we do not) the measure-
ments based on CIVk1549 (Shen et al., 2008; Labita et al., 2009).
There may be a change at higher redshift (Trakhtenbrot et al.,
2011) if we consider only MBH values obtained from Hb and
MgIIk2800 measures. Fig. 9 combines a low-z sample (Zamfir
et al., 2010) with samples using Hb observed with IR spectrometers
(to z ! 3.5) and MgIIk2800 using optical and IR measures. We see a
possible turnover in estimated MBH at the highest redshifts
although some care is needed in interpreting these results. Most
sources in the range 1 [ z [ 2.5 were selected from the brightest
quasars in the Hamburg ESO survey and are the most luminous
quasars known in that redshift range. Observations at very high
redshift refer to much fainter quasars. We must restrict our atten-
tion to the high-end of the mass distribution when we evaluate the
significance of the turnover. Counting sources with masses in the
ranges 9.25 6 logMBH 6 9.75 and 8.75 6 logMBH 6 9.25, we find
that the ratio of the numbers of less-massive to more-massive
sources at redshift J 4 is lower than for the samples at
1 [ z [ 3.8. A simple application of Poisson statistics to these ra-
tios confirms a real trend. Given the different sample selection cri-
teria at different redshifts we believe that more data are needed
before the turnover can be regarded as established.

As a final consideration we note that the computed MBH may
not be critical for concordance cosmology, since black holes can
grow to the observed masses in a duty cycle that is significantly
shorter than the age of the Universe at z ! 6 according to Trakh-
tenbrot et al. (2011).

14. Conclusion

MBH computation techniques for large samples of quasars are
rough and the lack of accuracy in MBH estimates is serious. There
are several areas that could lead to significant improvement:

" a significant reduction in scatter could be achieved by more
careful selection of virial broadening estimators (best are Hb
and MgII);
" a second factor is related to knowledge of the BLR structure that

is still hotly debated (Gaskell, 2009b). There is evidence that
Pop. A and B sources show different BLR structure and kinemat-
ics. Significantly different f values are likely associated with the
two populations;
" photoionization methods should be favored over methods

based on the rBLR-L correlation.

Considering the large scatter introduced by uncertainties in the
factors entering the virial relation it is still not surprising that MBH

estimates and those derived by randomly reassigning the quasar
broad-line widths to different objects show such similarities in
the MBH vs. z plane (Croom, 2011). However this provocative result
may not stand for long.

The work was presented as an invited talk at special workshop
‘‘Spectral lines and super-massive black holes’’ held on June 10,
2011 as a part of activity in the frame of COST action 0905 ‘‘Black
holes in a violent universe’’ and as a part of the 8th Serbian
Conference on Spectral Line Shapes in Astrophysics. We are
indebted to Martin Gaskell for discussions and many insightful
suggestions. We also acknowledge with gratitude the hospitality
and good organization of the Conference in Divčibare: Luka,
Dragana, Darko and all the others of the organizing committee.

Fig. 8. Sketch illustrating 2 examples of most-frequently observed Hb profiles in
Pop. B sources (upper half) and the profiles that might be signatures of binary black
holes. The SDSS 153636.221 + 044127.0 Hb line profile (Boroson and Lauer, 2009)
corresponds to the lower-left case.

Fig. 9. MBH versus z for a low-z sample (gray dots Zamfir et al., 2010), and several
intermediate to high z samples. Red circles: Marziani et al. (2009); open squares:
Dietrich et al. (2009); open triangles: Shemmer et al. (2004); filled pentagons:
Netzer et al. (2007); filled squares: Trakhtenbrot et al. (2011); open starred
octagons: Willott et al. (2010); filled octagons: Kurk et al. (2007); large spot at
z ! 7: the high-z quasar whose discovery was announced in late June 2011
(Mortlock et al., 2011). The dashed line marks MBH = 5 # 109 M$. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

P. Marziani, J.W. Sulentic / New Astronomy Reviews 56 (2012) 49–63 59

ones showing opposite peak and line base displacement in radial
velocity (Shen and Loeb, 2010), but altogether they account for no
more than a few percent of quasars.

13. Toward higher and higher redshifts: the evidence for a
turnover

FWHM Hb measures can provide good MBH estimates out to z!
3.8. 8 m-class telescopes yield high s/n measures for the high lumi-
nosity tail of the quasar optical luminosity function. Sampling over
a wider part of the optical luminosity function (down to Seyfert 1
luminosities (MV ! -23) becomes possible with the next generation
of large telescopes). BH mass estimates beyond z ! 3.8 or simply
larger samples beyond z ! 0.7 requires use of Hb surrogate lines.
The two most used surrogates are MgIIk2800 and CIVk1549.
CIVk1549 cannot be trusted but MgIIk2800 may be able to serve
as a surrogate virial estimator for the highest redshift quasars

currently known. Spectra can be obtained for z ! 6 quasars in the
K band (Kurk et al., 2007).

The best MBH estimates out to z ! 4 show no evidence of a turn-
over which would reflect the epoch when the largest black holes
were still growing. Instead we see constant MBH upper limit near
logMBH ! 9.7 if we trust in part (which we do not) the measure-
ments based on CIVk1549 (Shen et al., 2008; Labita et al., 2009).
There may be a change at higher redshift (Trakhtenbrot et al.,
2011) if we consider only MBH values obtained from Hb and
MgIIk2800 measures. Fig. 9 combines a low-z sample (Zamfir
et al., 2010) with samples using Hb observed with IR spectrometers
(to z ! 3.5) and MgIIk2800 using optical and IR measures. We see a
possible turnover in estimated MBH at the highest redshifts
although some care is needed in interpreting these results. Most
sources in the range 1 [ z [ 2.5 were selected from the brightest
quasars in the Hamburg ESO survey and are the most luminous
quasars known in that redshift range. Observations at very high
redshift refer to much fainter quasars. We must restrict our atten-
tion to the high-end of the mass distribution when we evaluate the
significance of the turnover. Counting sources with masses in the
ranges 9.25 6 logMBH 6 9.75 and 8.75 6 logMBH 6 9.25, we find
that the ratio of the numbers of less-massive to more-massive
sources at redshift J 4 is lower than for the samples at
1 [ z [ 3.8. A simple application of Poisson statistics to these ra-
tios confirms a real trend. Given the different sample selection cri-
teria at different redshifts we believe that more data are needed
before the turnover can be regarded as established.

As a final consideration we note that the computed MBH may
not be critical for concordance cosmology, since black holes can
grow to the observed masses in a duty cycle that is significantly
shorter than the age of the Universe at z ! 6 according to Trakh-
tenbrot et al. (2011).

14. Conclusion

MBH computation techniques for large samples of quasars are
rough and the lack of accuracy in MBH estimates is serious. There
are several areas that could lead to significant improvement:

" a significant reduction in scatter could be achieved by more
careful selection of virial broadening estimators (best are Hb
and MgII);
" a second factor is related to knowledge of the BLR structure that

is still hotly debated (Gaskell, 2009b). There is evidence that
Pop. A and B sources show different BLR structure and kinemat-
ics. Significantly different f values are likely associated with the
two populations;
" photoionization methods should be favored over methods

based on the rBLR-L correlation.

Considering the large scatter introduced by uncertainties in the
factors entering the virial relation it is still not surprising that MBH

estimates and those derived by randomly reassigning the quasar
broad-line widths to different objects show such similarities in
the MBH vs. z plane (Croom, 2011). However this provocative result
may not stand for long.

The work was presented as an invited talk at special workshop
‘‘Spectral lines and super-massive black holes’’ held on June 10,
2011 as a part of activity in the frame of COST action 0905 ‘‘Black
holes in a violent universe’’ and as a part of the 8th Serbian
Conference on Spectral Line Shapes in Astrophysics. We are
indebted to Martin Gaskell for discussions and many insightful
suggestions. We also acknowledge with gratitude the hospitality
and good organization of the Conference in Divčibare: Luka,
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•Direct Collapse BH Scenario:  
宇宙初期に超大質量星(             ) 
が誕生し, それが重力崩壊した後 
に残されたBHを種とする.
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ABSTRACT
Supermassive stars (SMS; ∼ 105 M⊙) attract attention as progenitors of supermassive
black holes observed at high redshifts. To form SMSs by accretion, central protostars
must accrete at as high rates as ∼ 0.1-1 M⊙ yr−1. Such protostars have very extended
structures with bloated envelopes, like super-giant stars, and are called super-giant
protostars (SGPSs). Under the assumption of hydrostatic equilibrium, SGPSs have
density inverted layers, where the luminosity becomes locally super-Eddington, near
the surface. If the envelope matter is allowed to flow out, however, a stellar wind
could be launched and hinder the accretion growth of SGPSs before reaching the
supermassive regime. We examine whether radiation-driven winds are launched from
SGPSs by constructing steady and spherically symmetric wind solutions. We find that
the wind velocity does not reach the escape velocity in any case considered. This is
because once the temperature falls below ∼ 104 K, the opacity plummet drastically
owing to the recombination of hydrogen and the acceleration ceases suddenly. This
indicates that, in realistic non-steady cases, even if outflows are launched from the
surface of SGPSs, they would fall back again. Such a “wind” does not result in net
mass loss and does not prevent the growth of SGPSs. In conclusion, SGPSs will grow
to SMSs and eventually collapse to massive BHs of ∼ 105 M⊙, as long as the rapid
accretion is maintained.

Key words: stars: formation - stars: Population III - dark ages, reionization, first
stars - early Universe.

1 INTRODUCTION

In the last decade, a number of luminous quasars (QSOs)
have been discovered at redshifts greater than 6 (Fan 2006;
Mortlock et al. 2011; Venemans et al. 2013; Wu et al. 2015),
including the current record holder ULAS J1120+0641 at
z = 7.1 (Mortlock et al. 2011). This means that supermas-
sive black holes (SMBHs) of ∼ 109-1010 M⊙ have already
existed in less than a billion year after the Big Bang. Such
early formation poses a challenge to theories of the SMBH
formation (e.g., Volonteri 2010; Haiman 2013).

Although the first stars are considered theoretically
to be typically massive with ∼ 100 M⊙, and even can be
as massive as ∼ 1000 M⊙ in some circumstances, (e.g.,
Hosokawa et al. 2011; Hirano et al. 2014), it takes 0.84 and

⋆ E-mail: nakauchi@astr.tohoku.ac.jp

0.73 Gyr for their remnant BHs of 100 and 1000 M⊙, respec-
tively, to reach the mass of the z = 7.1 SMBH, 2×109 M⊙, via
the Eddington-limited accretion. These growth time scales
are still exceeding (for seed BHs of 100 M⊙) or only slightly
below (for 1000 M⊙ seeds) the age of the Universe at that
time, 0.77 Gyr. Even in the latter case, the BH is required
to continuously accrete at the Eddington rate all the way
to the SMBH, i.e., the 100 % duty cycle in the six orders
of magnitude in mass, which is quite improbable both from
the observational and theoretical points of view. From the
high-z QSO observations, the duty cycle is estimated as ! 60
% at most at z ≥ 3.5 (e.g., Shen et al. 2007; Shankar et al.
2010). Theoretically, radiative feedback from the BH will
make the growth time longer, so that the situation becomes
even worse (e.g., Alvarez et al. 2009; Milosavljević et al.
2009), although the super-Eddington accretion, if it oc-

© 2017 The Authors



Direct Collapse BH Scenario

Omukai 2001 
Bromm&Loeb 2003 etc…

•強UV照射下にある始原ガス雲では原始星への質量降着が巨大.

completely suppressed in contracting primordial clouds where the external
FUV field is extremely strong (Omukai, 2001; Bromm & Loeb, 2003) and
shock compression enhances the collisional dissociation rate of H2 (Inayoshi
& Omukai, 2012). In first galaxies, despite the lack of molecular cooling,
such primordial clouds evolve almost isothermally through hydrogen atomic
cooling with T ∼ 8000 K, which realizes such high mass accretion rates
as ∼ 0.1-1 M⊙ yr−1 (Inayoshi et al., 2014). If the parent cloud can con-
tracts monolithically avoiding fragmentation and the envelope accretion can
continue over the stellar life time ∼ Myr, it can grow up to an SMS of
! 105 M⊙ (Hosokawa et al., 2012a, 2013). The final fate of such exotic stars
are still controversial. If they could collapse directly without little mass ejec-
tion and form massive BHs of ! 105 M⊙, then they could be the seeds of
SMBHs ! 109 M⊙ discovered in high-z QSOs at z ! 6 (Mortlock et al.,
2011). It takes too much time for Pop III remnant BH seeds of ∼ 102 M⊙
to grow up to ! 109 M⊙ through the Eddington-limited accretion within the
age of the Universe at z ! 6 (" 1 Gyr).

3.2.3 The Role of HD Cooling in Pop III.2 Star For-
mation

Pop III.2 stars are formed from primordial clouds that receive radiative
and mechanical feedback. In some case, HD cooling, in addition to H2,
could be efficient and change the thermal pathway of contracting primor-
dial clouds (Uehara & Inutsuka, 2000; Nakamura & Umemura, 2002; Mackey
et al., 2003; Machida et al., 2005; Nagakura & Omukai, 2005; Johnson &
Bromm, 2006; Yoshida et al., 2007a,b; Wolcott-Green & Haiman, 2011; Hosokawa
et al., 2012b). For example, the electron fraction could be raised in the fol-
lowing regions: relic HII regions through photoionization, shock-compressed
regions in virialization and SN explosions through collisional ionization, and
CR-injected regions through collisional ionization. Then, the elevated elec-
tron fraction promotes the formation of H2 up to y(H2) ∼ 10−3, which is by an
order of magnitude larger than that in the Pop III.1 case (y(H2) ∼ 10−4) (e.g.,
O’Shea et al., 2005). Once the temperature decreases below 150 K through
H2 cooling, deuterium is rapidly converted into HD via the exothermic reac-
tion,

D + H+ # D+ +H, (3.8)

D+ +H2 # HD+ H+. (3.9)
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2010). Theoretically, radiative feedback from the BH will
make the growth time longer, so that the situation becomes
even worse (e.g., Alvarez et al. 2009; Milosavljević et al.
2009), although the super-Eddington accretion, if it oc-
curred, may help shorten the growth time enormously (e.g.,
Volonteri & Rees 2005; Alexander & Natarajan 2014).

The so-called direct collapse scenario is an alternative
pathway. In this framework, we suppose that a supermas-
sive star (SMS) of ∼ 105 M⊙ forms and collapses directly
to a BH with almost the same mass by the post-Newtonian
instability (e.g., Shapiro & Teukolsky 1983). With the more
massive seeds, the growth time to ∼ 2×109 M⊙ is reduced to
< 0.5 Gyr, below the age of the Universe at z = 7.1 by some
margin.

In a currently favored scenario (Bromm & Loeb
2003), the SMSs are supposed to be formed in
atomic-cooling halos where the H2 formation is pro-
hibited either by photodissociation due to strong far-
ultraviolet radiation (Omukai 2001; Wolcott-Green et al.
2011; Sugimura et al. 2014) or collisional dissociation by a
high-density shock (Inayoshi & Omukai 2012). In such ha-
los, a cloud collapses isothermally at ∼ 8000 K solely by the
atomic cooling (Omukai 2001). Without a major episode of
cooling, the cloud collapses monolithically avoiding signifi-
cant fragmentation until the formation of a protostar at its
center (Inayoshi et al. 2014; Becerra et al. 2015). The high
temperature in the pre-stellar cloud results in the high ac-
cretion rate of Ṁacc = 0.1-1 M⊙ yr−1 onto the protostar ac-
cording to the relation Ṁacc ∼ c3

s /G (e.g., Shu 1977).
Such rapid accretion must be maintained until the cen-

tral protostar grows to ! 105 M⊙ by circumventing the
possible obstacles. For example, in the case of the forma-
tion of ordinary first stars, radiative feedback, including the
photoevaporation of the accretion flows, plays an important
role in terminating their accretion growth and setting the
final mass at a few 10-100 M⊙ (e.g., McKee & Tan 2008;
Hosokawa et al. 2011, 2016; Susa 2013). But, this is not the
case for the SMS formation. With the accretion rate ex-
ceeding a threshold value, 0.03 M⊙ yr−1, the protostellar
evolution changes completely (Hosokawa et al. 2012, 2013).
Once the protostellar luminosity becomes close to the “clas-
sical” Eddington luminosity, LEdd,es = 4πcGM∗/κes where κes
is the Thomson scattering opacity, at a few 10 M⊙, the stel-
lar envelope swells greatly in radius reaching as large as
10-100 AU. With the stellar effective temperature as low
as ∼ 5000 K, UV photons are hardly emitted and radiative
feedback is too weak to halt the accretion. Resembling the
present-day red super-giant stars in appearance, the name
“super-giant protostars” (SGPSs) is coined for the rapidly
accreting stars with the bloated envelopes. It is also known
that the pulsational mass-loss rates from SGPSs are at most
∼ 10−3 M⊙ yr−1, two or three orders of magnitude lower than
the accretion rate (Inayoshi et al. 2013). Thus the pulsation
either would not prevent them growing supermassive.

A radiation driven stellar wind is another possible ob-
stacle for the SGPS growth. Similarly to the local Wolf-
Rayet (WR) stars, which exhibit the mass-loss at the
rates of Ṁw ∼ 10−5-10−4 M⊙ yr−1 in radiation-driven
winds (Gräfener et al. 2012), the SGPSs have luminosities
close to the classical Eddington value. In addition, the SG-
PSs have a layer of density inversion, where the density in-
creases outwardly, near the surface. Although the radiative

luminosity locally exceeds the Eddington value LEdd,local =
4πcGM∗/κ, where κ is the local opacity (Hosokawa et al.
2012, 2013), the hydrostatic equilibrium is still achieved as
the layer is pushed down by the weight of the outer dense
layers (e.g., Joss et al. 1973). If we omit the assumption of
hydrostatic equilibrium and allow the matter to flow, how-
ever, we may find a wind solution blowing from the stellar
surface (Ro & Matzner 2016). If such a stellar wind causes
the significant mass loss, the stellar mass growth via accre-
tion may be stopped at some moment before the formation
of a SMS. To examine such a possibility, we here construct
steady stellar wind solutions launched from the surface of
SGPSs assuming the spherical symmetry. We find that the
radiation pressure force in fact allows the smooth accelera-
tion from the subsonic to supersonic regime. The wind veloc-
ity, however, does not reach the stellar escape velocity since
the acceleration is suddenly over due to the opacity cutoff
below ∼ 104 K. We thus conclude that the stellar wind either
does not prevent the growth of a SGPS and it will eventually
grow to a SMS as long as the rapid accretion is maintained.

The rest of this paper is organized as follows. In Section
2, we describe the basic equations and the method to con-
struct the stellar wind models. In Section 3, we construct
a series of wind solutions passing through the sonic point
smoothly, without considering the connection to the stars
at their bases and classify the solutions. In Section 4, we
present the wind solutions connected to the SGPSs and ex-
amine whether the wind mass-loss occurs from the SGPSs.
Finally, Section 5 is devoted to the summary and discussion.

2 FORMULATION OF OPTICALLY THICK
WIND SOLUTIONS

In this section, we describe the basic equations and boundary
conditions to calculate the stellar wind solutions from SG-
PSs. In Figure 1, we illustrate the situation considered here.
We suppose that the SGPS gains the mass through the geo-
metrically thin accretion disk. Except for the equatorial re-
gion, stellar winds could be launched from the surface by the
radiation pressure force. We do not consider the interaction
between the accretion disk and the wind, for simplicity. As-
suming that the accretion region is small in comparison with
the outflowing region, we consider the steady wind structure
under the assumption of the spherical symmetry.

2.1 Basic Equations

We focus on the formulation valid for the optically thick
winds (Finzi & Wolf 1971; Żytkow 1972; Quinn & Paczynski
1985; Lee 1990; Kato & Iben 1992; Kato & Hachisu 1994;
Nugis & Lamers 2002; Dotan & Shaviv 2012; Ro & Matzner
2016), which is equivalent to assuming that the wind accel-
eration occurs beneath the photosphere as in the case of the
dense WR wind (e.g., Crowther 2007). The basic equations
governing the wind structure are as follows.

First, the equations of motion (EoM) and continu-
ity (EoC) are

v
dv
dr
+

1
ρ

dP
dr
+

GM∗
r2 = 0, (1)
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2010). Theoretically, radiative feedback from the BH will
make the growth time longer, so that the situation becomes
even worse (e.g., Alvarez et al. 2009; Milosavljević et al.
2009), although the super-Eddington accretion, if it oc-
curred, may help shorten the growth time enormously (e.g.,
Volonteri & Rees 2005; Alexander & Natarajan 2014).

The so-called direct collapse scenario is an alternative
pathway. In this framework, we suppose that a supermas-
sive star (SMS) of ∼ 105 M⊙ forms and collapses directly
to a BH with almost the same mass by the post-Newtonian
instability (e.g., Shapiro & Teukolsky 1983). With the more
massive seeds, the growth time to ∼ 2×109 M⊙ is reduced to
< 0.5 Gyr, below the age of the Universe at z = 7.1 by some
margin.

In a currently favored scenario (Bromm & Loeb
2003), the SMSs are supposed to be formed in
atomic-cooling halos where the H2 formation is pro-
hibited either by photodissociation due to strong far-
ultraviolet radiation (Omukai 2001; Wolcott-Green et al.
2011; Sugimura et al. 2014) or collisional dissociation by a
high-density shock (Inayoshi & Omukai 2012). In such ha-
los, a cloud collapses isothermally at ∼ 8000 K solely by the
atomic cooling (Omukai 2001). Without a major episode of
cooling, the cloud collapses monolithically avoiding signifi-
cant fragmentation until the formation of a protostar at its
center (Inayoshi et al. 2014; Becerra et al. 2015). The high
temperature in the pre-stellar cloud results in the high ac-
cretion rate of Ṁacc = 0.1-1 M⊙ yr−1 onto the protostar ac-
cording to the relation Ṁacc ∼ c3

s /G (e.g., Shu 1977).
Such rapid accretion must be maintained until the cen-

tral protostar grows to ! 105 M⊙ by circumventing the
possible obstacles. For example, in the case of the forma-
tion of ordinary first stars, radiative feedback, including the
photoevaporation of the accretion flows, plays an important
role in terminating their accretion growth and setting the
final mass at a few 10-100 M⊙ (e.g., McKee & Tan 2008;
Hosokawa et al. 2011, 2016; Susa 2013). But, this is not the
case for the SMS formation. With the accretion rate ex-
ceeding a threshold value, 0.03 M⊙ yr−1, the protostellar
evolution changes completely (Hosokawa et al. 2012, 2013).
Once the protostellar luminosity becomes close to the “clas-
sical” Eddington luminosity, LEdd,es = 4πcGM∗/κes where κes
is the Thomson scattering opacity, at a few 10 M⊙, the stel-
lar envelope swells greatly in radius reaching as large as
10-100 AU. With the stellar effective temperature as low
as ∼ 5000 K, UV photons are hardly emitted and radiative
feedback is too weak to halt the accretion. Resembling the
present-day red super-giant stars in appearance, the name
“super-giant protostars” (SGPSs) is coined for the rapidly
accreting stars with the bloated envelopes. It is also known
that the pulsational mass-loss rates from SGPSs are at most
∼ 10−3 M⊙ yr−1, two or three orders of magnitude lower than
the accretion rate (Inayoshi et al. 2013). Thus the pulsation
either would not prevent them growing supermassive.

A radiation driven stellar wind is another possible ob-
stacle for the SGPS growth. Similarly to the local Wolf-
Rayet (WR) stars, which exhibit the mass-loss at the
rates of Ṁw ∼ 10−5-10−4 M⊙ yr−1 in radiation-driven
winds (Gräfener et al. 2012), the SGPSs have luminosities
close to the classical Eddington value. In addition, the SG-
PSs have a layer of density inversion, where the density in-
creases outwardly, near the surface. Although the radiative

luminosity locally exceeds the Eddington value LEdd,local =
4πcGM∗/κ, where κ is the local opacity (Hosokawa et al.
2012, 2013), the hydrostatic equilibrium is still achieved as
the layer is pushed down by the weight of the outer dense
layers (e.g., Joss et al. 1973). If we omit the assumption of
hydrostatic equilibrium and allow the matter to flow, how-
ever, we may find a wind solution blowing from the stellar
surface (Ro & Matzner 2016). If such a stellar wind causes
the significant mass loss, the stellar mass growth via accre-
tion may be stopped at some moment before the formation
of a SMS. To examine such a possibility, we here construct
steady stellar wind solutions launched from the surface of
SGPSs assuming the spherical symmetry. We find that the
radiation pressure force in fact allows the smooth accelera-
tion from the subsonic to supersonic regime. The wind veloc-
ity, however, does not reach the stellar escape velocity since
the acceleration is suddenly over due to the opacity cutoff
below ∼ 104 K. We thus conclude that the stellar wind either
does not prevent the growth of a SGPS and it will eventually
grow to a SMS as long as the rapid accretion is maintained.

The rest of this paper is organized as follows. In Section
2, we describe the basic equations and the method to con-
struct the stellar wind models. In Section 3, we construct
a series of wind solutions passing through the sonic point
smoothly, without considering the connection to the stars
at their bases and classify the solutions. In Section 4, we
present the wind solutions connected to the SGPSs and ex-
amine whether the wind mass-loss occurs from the SGPSs.
Finally, Section 5 is devoted to the summary and discussion.

2 FORMULATION OF OPTICALLY THICK
WIND SOLUTIONS

In this section, we describe the basic equations and boundary
conditions to calculate the stellar wind solutions from SG-
PSs. In Figure 1, we illustrate the situation considered here.
We suppose that the SGPS gains the mass through the geo-
metrically thin accretion disk. Except for the equatorial re-
gion, stellar winds could be launched from the surface by the
radiation pressure force. We do not consider the interaction
between the accretion disk and the wind, for simplicity. As-
suming that the accretion region is small in comparison with
the outflowing region, we consider the steady wind structure
under the assumption of the spherical symmetry.

2.1 Basic Equations

We focus on the formulation valid for the optically thick
winds (Finzi & Wolf 1971; Żytkow 1972; Quinn & Paczynski
1985; Lee 1990; Kato & Iben 1992; Kato & Hachisu 1994;
Nugis & Lamers 2002; Dotan & Shaviv 2012; Ro & Matzner
2016), which is equivalent to assuming that the wind accel-
eration occurs beneath the photosphere as in the case of the
dense WR wind (e.g., Crowther 2007). The basic equations
governing the wind structure are as follows.

First, the equations of motion (EoM) and continu-
ity (EoC) are

v
dv
dr
+

1
ρ

dP
dr
+

GM∗
r2 = 0, (1)
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2010). Theoretically, radiative feedback from the BH will
make the growth time longer, so that the situation becomes
even worse (e.g., Alvarez et al. 2009; Milosavljević et al.
2009), although the super-Eddington accretion, if it oc-
curred, may help shorten the growth time enormously (e.g.,
Volonteri & Rees 2005; Alexander & Natarajan 2014).

The so-called direct collapse scenario is an alternative
pathway. In this framework, we suppose that a supermas-
sive star (SMS) of ∼ 105 M⊙ forms and collapses directly
to a BH with almost the same mass by the post-Newtonian
instability (e.g., Shapiro & Teukolsky 1983). With the more
massive seeds, the growth time to ∼ 2×109 M⊙ is reduced to
< 0.5 Gyr, below the age of the Universe at z = 7.1 by some
margin.

In a currently favored scenario (Bromm & Loeb
2003), the SMSs are supposed to be formed in
atomic-cooling halos where the H2 formation is pro-
hibited either by photodissociation due to strong far-
ultraviolet radiation (Omukai 2001; Wolcott-Green et al.
2011; Sugimura et al. 2014) or collisional dissociation by a
high-density shock (Inayoshi & Omukai 2012). In such ha-
los, a cloud collapses isothermally at ∼ 8000 K solely by the
atomic cooling (Omukai 2001). Without a major episode of
cooling, the cloud collapses monolithically avoiding signifi-
cant fragmentation until the formation of a protostar at its
center (Inayoshi et al. 2014; Becerra et al. 2015). The high
temperature in the pre-stellar cloud results in the high ac-
cretion rate of Ṁacc = 0.1-1 M⊙ yr−1 onto the protostar ac-
cording to the relation Ṁacc ∼ c3

s /G (e.g., Shu 1977).
Such rapid accretion must be maintained until the cen-

tral protostar grows to ! 105 M⊙ by circumventing the
possible obstacles. For example, in the case of the forma-
tion of ordinary first stars, radiative feedback, including the
photoevaporation of the accretion flows, plays an important
role in terminating their accretion growth and setting the
final mass at a few 10-100 M⊙ (e.g., McKee & Tan 2008;
Hosokawa et al. 2011, 2016; Susa 2013). But, this is not the
case for the SMS formation. With the accretion rate ex-
ceeding a threshold value, 0.03 M⊙ yr−1, the protostellar
evolution changes completely (Hosokawa et al. 2012, 2013).
Once the protostellar luminosity becomes close to the “clas-
sical” Eddington luminosity, LEdd,es = 4πcGM∗/κes where κes
is the Thomson scattering opacity, at a few 10 M⊙, the stel-
lar envelope swells greatly in radius reaching as large as
10-100 AU. With the stellar effective temperature as low
as ∼ 5000 K, UV photons are hardly emitted and radiative
feedback is too weak to halt the accretion. Resembling the
present-day red super-giant stars in appearance, the name
“super-giant protostars” (SGPSs) is coined for the rapidly
accreting stars with the bloated envelopes. It is also known
that the pulsational mass-loss rates from SGPSs are at most
∼ 10−3 M⊙ yr−1, two or three orders of magnitude lower than
the accretion rate (Inayoshi et al. 2013). Thus the pulsation
either would not prevent them growing supermassive.

A radiation driven stellar wind is another possible ob-
stacle for the SGPS growth. Similarly to the local Wolf-
Rayet (WR) stars, which exhibit the mass-loss at the
rates of Ṁw ∼ 10−5-10−4 M⊙ yr−1 in radiation-driven
winds (Gräfener et al. 2012), the SGPSs have luminosities
close to the classical Eddington value. In addition, the SG-
PSs have a layer of density inversion, where the density in-
creases outwardly, near the surface. Although the radiative

luminosity locally exceeds the Eddington value LEdd,local =
4πcGM∗/κ, where κ is the local opacity (Hosokawa et al.
2012, 2013), the hydrostatic equilibrium is still achieved as
the layer is pushed down by the weight of the outer dense
layers (e.g., Joss et al. 1973). If we omit the assumption of
hydrostatic equilibrium and allow the matter to flow, how-
ever, we may find a wind solution blowing from the stellar
surface (Ro & Matzner 2016). If such a stellar wind causes
the significant mass loss, the stellar mass growth via accre-
tion may be stopped at some moment before the formation
of a SMS. To examine such a possibility, we here construct
steady stellar wind solutions launched from the surface of
SGPSs assuming the spherical symmetry. We find that the
radiation pressure force in fact allows the smooth accelera-
tion from the subsonic to supersonic regime. The wind veloc-
ity, however, does not reach the stellar escape velocity since
the acceleration is suddenly over due to the opacity cutoff
below ∼ 104 K. We thus conclude that the stellar wind either
does not prevent the growth of a SGPS and it will eventually
grow to a SMS as long as the rapid accretion is maintained.

The rest of this paper is organized as follows. In Section
2, we describe the basic equations and the method to con-
struct the stellar wind models. In Section 3, we construct
a series of wind solutions passing through the sonic point
smoothly, without considering the connection to the stars
at their bases and classify the solutions. In Section 4, we
present the wind solutions connected to the SGPSs and ex-
amine whether the wind mass-loss occurs from the SGPSs.
Finally, Section 5 is devoted to the summary and discussion.

2 FORMULATION OF OPTICALLY THICK
WIND SOLUTIONS

In this section, we describe the basic equations and boundary
conditions to calculate the stellar wind solutions from SG-
PSs. In Figure 1, we illustrate the situation considered here.
We suppose that the SGPS gains the mass through the geo-
metrically thin accretion disk. Except for the equatorial re-
gion, stellar winds could be launched from the surface by the
radiation pressure force. We do not consider the interaction
between the accretion disk and the wind, for simplicity. As-
suming that the accretion region is small in comparison with
the outflowing region, we consider the steady wind structure
under the assumption of the spherical symmetry.

2.1 Basic Equations

We focus on the formulation valid for the optically thick
winds (Finzi & Wolf 1971; Żytkow 1972; Quinn & Paczynski
1985; Lee 1990; Kato & Iben 1992; Kato & Hachisu 1994;
Nugis & Lamers 2002; Dotan & Shaviv 2012; Ro & Matzner
2016), which is equivalent to assuming that the wind accel-
eration occurs beneath the photosphere as in the case of the
dense WR wind (e.g., Crowther 2007). The basic equations
governing the wind structure are as follows.

First, the equations of motion (EoM) and continu-
ity (EoC) are

v
dv
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+
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dP
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+

GM∗
r2 = 0, (1)
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Figure 9. Same as Figure 7, but for the stellar model with Ṁacc =
0.1 M⊙ yr−1 and M∗ = 1000 M⊙. In each panel, the blue, green, red,
and black lines correspond to the results for rm = 6000, 5500, 5000,
and 4500 R⊙, respectively.
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16000, 14000, 13000, and 12000 R⊙, respectively.
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Figure 11. Same as Figure 7, but for the stellar model with
Ṁacc = 1.0 M⊙ yr−1 and M∗ = 1000 M⊙. In each panel, the blue,
green, red, and black lines correspond to the results with rm =
6000, 5500, 5000, and 4500 R⊙, respectively.

cape velocity increases with the stellar mass as vesc,∗ ∝ M1/4
∗

from the relation R∗ ∝ M1/2
∗ for the SGPSs (Hosokawa et al.

2012). Whereas the mass-loss rates are mathematically de-
termined as Ṁwind = 2.3, 1.4, 0.92, 0.54 M⊙ yr−1 (Ṁwind =
3.1, 2.1, 1.3, 0.73 M⊙ yr−1) for the 1000 M⊙ (104 M⊙) models,
such steady winds can not be launched from these stars and
prevent the mass growth.

For the flow to be accelerated to the supersonic regime,
the matching point must be located outside a certain ra-
dius, which is rm,min ≃ 4500 R⊙ (12000 R⊙) for the M∗ =
1000 M⊙ (104 M⊙) case. As seen in Figures 9 and 10, the
velocity gradient at the sonic point becomes smaller for
the smaller matching radius and it eventually becomes even
negative for the matching radius below the threshold value
rm,min and thus the flow cannot reach the supersonic regime.
For this reason, we here consider only the matching points
outside this threshold rm > rm,min.

Hence, with the accretion rate of Ṁacc = 0.1 M⊙ yr−1,
the mass loss by stellar winds does not prevent SGPSs from
growing up at least to 104 M⊙. Without more massive SGPS
models, we can not examine the effect of stellar winds on the
SGPS evolution for M∗ ≥ 104 M⊙. We expect, however, that
a SGPS reaches the supermassive regime, since successful
wind solutions exist only for M∗ ! 200 M⊙, according to the
analytical estimate in Section 3 (Eq. 13).

4.2 Cases with Ṁacc = 1.0 M⊙ yr−1

Here, we consider the cases with the higher accretion
rate of Ṁacc = 1.0 M⊙ yr−1. In this case, the proto-
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and gravity (black). Dashed parts of lines show that the force
is in the negative (inward) direction. The stellar parameters are
Ṁacc = 0.1 M⊙ yr−1 and M∗ = 100 M⊙. The matching point (filled
square) is located at rm = 1700 R⊙. The sonic point is indicated
by the filled circle.

radius, and that the stellar mass acquisition via accretion is
thus not prevented by the wind mass loss.

In the middle panel of Figure 7, we can see that, with
smaller matching radius rm, the outflowing envelope has
more extended structure with lower density at the sonic
point. On the other hand, the temperature at the sonic
point, which is located just inside the opacity peak (see Fig-
ure 8 upper), is ≃ 104 K for all the cases (Figure 7 lower)
because of very strong temperature-dependence of the opac-
ity around this value.

The maximum value of the local Eddington ratio Γr,max
is lower for the inner matching point case (Figure 8 lower).
This is because the density above the sonic point r > rs be-
comes lower for smaller rm, which results in the lower opac-
ity and thus the smaller Γr,max. In particular, Γr,max never
reaches unity for rm smaller than 1500 R⊙.

4.1.3 Dependence on the Stellar Mass

Next, we examine the stellar wind solutions for more massive
SGPSs with the same accretion rate Ṁacc = 0.1 M⊙ yr−1.
The wind solutions for the 1000 and 104 M⊙ stars are shown
in Figures 9 and 10, respectively. Both stellar models have
the extended envelopes with the radii R∗ ≃ 7000 R⊙ (1000
M⊙) and 18000 R⊙ (104 M⊙). The 95 % of the total stellar
mass is enclosed within 2000 R⊙ for the 1000 M⊙ model and
500 R⊙ for the 104 M⊙ model, respectively. The matching
radii are chosen at rm = 6000, 5500, 5000, and 4500 R⊙ for
1000 M⊙, and rm = 16000, 14000, 13000, and 12000 R⊙ for
104 M⊙, respectively.

All these solutions for the 1000 and 104 M⊙ stars are
again the stalled ones as in the case of the 100 M⊙ model:
the flow starts to decelerate after reaching the sonic point
without reaching the escape velocity. Note also that the
maximum velocity in the wind remains much below the es-
cape velocity vesc,∗ for more massive models since the es-
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Density Inversion @ Stellar Surface

＊ 静水圧平衡の仮定を外して外層構造を解き直す.
＊ 降着進化する大質量(原始)星の表面から星風が 
    発生する可能性を調べる.
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Figure 11: Wind 解の持つ速度, 密度, 温度構造の結果 (solid lines). Ṁacc =
1.0 M⊙ yr−1, M∗ = 104 M⊙ の場合. 接続点の選び方による構造の違いを
示した. purple, green, red, black lines はそれぞれ, 接続点の半径を rb =
16000, 15000, 14000, 13000 R⊙と設定した場合に対応する.

エネルギー輸送は重要とならないだろう. Subsonic regionの構造を決める際に重要
となる可能性があるけれども, escape velocityに達するような windが発生しうるか
どうかは supersonic regionでの opacityや輻射圧勾配力の変化に依存するので, 結局
windが発生しないという結果には影響を与えないと考えられる.
大きな速度勾配があるwindの中ではDoppler shiftingにより line吸収, 散乱によ

る輻射圧が大きくなる. その場合, 本研究のように Rosseland mean opacityを用い
て評価したのでは輻射圧勾配力を過小評価することになる (Castor et al., 1975). し
かしながら, 今は始原的な組成を持つ星の進化を考えている. 始原的な組成の場合
line-driven windは弱いことがわかっているので (Krtička & Kubát, 2006), この効果
はあまり重要にはならず, 今回の結果には大きく影響しないと考えられる.
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ρ

dPgas

dr
=

GMr

r2
(Γr − 1) Γr =

Lrad

LEdd
Γr ! 1 (15)
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静水圧平衡の式:

Do Stellar Winds Prevent the Formation of Supermassive Stars by Accretion? 3

2.1 Basic Equations

We focus on the formulation valid for the optically thick
winds (Finzi & Wolf 1971; Żytkow 1972; Quinn & Paczynski
1985; Lee 1990; Kato & Iben 1992; Kato & Hachisu 1994;
Nugis & Lamers 2002; Dotan & Shaviv 2012; Ro & Matzner
2016), which is equivalent to assuming that the wind accel-
eration occurs beneath the photosphere as in the case of the
dense WR wind (e.g., Crowther 2007). The basic equations
governing the wind structure are as follows.

First, the equations of motion (EoM) and continu-
ity (EoC) are

v
dv
dr
+

1
ρ

dP
dr
+

GM∗
r2 = 0, (1)

Ṁwind ≡ 4πr2ρv = const., (2)

where G is the gravitational constant, M∗ the total stellar
mass, Ṁwind the mass outflow rate, and v, P, and ρ corre-
spond to the velocity, total pressure, and density at radius
r, respectively. Since the radiation field is the thermal black
body in good approximation, the radiation pressure is given
by Prad = aT4/3, where a is the radiation constant, and T
the temperature. The total pressure P is given by the sum
of the gas pressure Pgas and the radiation pressure Prad:

P = Pgas + Prad =
R
µ
ρT +

1
3 aT4, (3)

where R is the gas constant, and µ the mean molecular
weight. After integration with respect to r, the energy equa-
tion is

Λ ≡ Lrad + Ṁwind

(
v2

2 + wgas + wrad −
GM∗

r

)
= const., (4)

where wgas = egas + Pgas/ρ is the specific enthalpy of the gas,
with egas the specific internal energy of the gas including the

ionization energy of H, He, and He+, and wrad = 4aT4/3ρ that
of radiation, respectively. The radiative luminosity in the
fluid frame Lrad is calculated by the diffusion approximation:

Lrad = −
16πacr2T3

3κρ
dT
dr
, (5)

where c is the speed of light, and κ the Rosseland mean opac-
ity. For the Rosseland mean opacity, we use the tabulated
values from the OPAL project (Iglesias & Rogers 1996) and
from Alexander & Ferguson (1994) above and below 7000 K,
respectively. We use their tables for the primordial chemical
composition with the hydrogen mass fraction of X = 0.7.

In Eqs. (1-5), we have four unknown functions,
v(r), ρ(r),T (r), and Lrad(r). A wind solution can be obtained
with the proper boundary conditions provided, which we de-
scribe in the next subsection.

2.2 Boundary Conditions

We impose the boundary conditions at the sonic point rs
and at the matching point rm of the star and the wind. The
latter corresponds to the base of the wind.

2.2.1 Condition at the Sonic Point

The sonic point corresponds to the singular point of the
EoM (Eq. 1). Eq. (1) can be rewritten in a form that explic-
itly shows the presence of the singular point, by substituting
the EoC (Eq. 2) and the EoS (Eq. 3) into Eq. (1):

1
v

dv
dr
=

⎡⎢⎢⎢⎢⎣
2
r

c2
T −

1
ρ

(
∂Pgas
∂T

)

ρ

dT
dr
+

GM∗
r2 (Γr − 1)

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
,

(6)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed, and
Γr ≡ Lrad/LEdd the Eddington ratio.

In the wind solutions, the numerator of Eq. (6) should
vanish simultaneously at the sonic point, since the velocity
gradient is required to be finite there (Lamers & Cassinelli
1999). This gives us the following boundary condition:

Γr =
1 −

( 2cT
vesc

)2

1 +
(
∂Pgas
∂Prad

)

ρ

at v = cT, (7)

where vesc ≡
√

2GM∗/r is the escape velocity at radius r.
We obtain a unique stellar wind solution for each set

of radius, density, and temperature (rs, ρs,Ts) at the sonic
point. The velocity vs and the radiation luminosity Lrad,s
at the sonic point are evaluated by using the first boundary
condition (Eq. 7) as vs = cT(ρs,Ts) and Lrad,s = Lrad(rs, ρs,Ts),
respectively. Substituting the evaluated values of vs and
Lrad,s into Eqs. (2) and (4), we can fix Ṁwind and Λ, which
remain constant throughout a wind solution. The veloc-
ity gradient at the sonic point is obtained by applying
the de l’Hopital rule to Eq. (6) (Lamers & Cassinelli 1999;
Nugis & Lamers 2002). The above procedure allows us to
construct one wind solution that smoothly passes through
the sonic point.

2.2.2 Conditions at the Matching Point of Star and Wind

We impose another boundary condition at the base of the
stellar wind to connect physical quantities smoothly from
the star to the wind. We assume that the wind starts blowing
at some radius rm. We regard rm as a free parameter without
specifying how the wind initially arises in the atmosphere.
For a hydrostatic stellar model, we set the matching point
from a layer that satisfies the following two conditions. First,
we require that the mass contained between the matching
and the sonic radii is small and less than 5 % of the stellar
mass. This is because the mass is taken as a constant and
equal to the stellar one in the gravity term of the wind equa-
tion. Second, we require that, around the matching radius,
the energy generation either via nuclear burning or grav-
itational contraction is negligible and the total luminosity
becomes constant in radius (Lr ∼ const.).

For the boundary conditions, we first require that the
density and temperature are continuous across the matching
point rm:

ρ(rm) = ρ∗(rm) and T (rm) = T∗(rm). (8)

where the subscript ∗ indicates the quantities from the (hy-
drostatic) stellar model. Note that the wind velocity is highly
subsonic at rm as long as rm ≪ rs. The first term in Eq.
(1) thus being much smaller than the second term, i.e.,
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Figure 11: Wind 解の持つ速度, 密度, 温度構造の結果 (solid lines). Ṁacc =
1.0 M⊙ yr−1, M∗ = 104 M⊙ の場合. 接続点の選び方による構造の違いを
示した. purple, green, red, black lines はそれぞれ, 接続点の半径を rb =
16000, 15000, 14000, 13000 R⊙と設定した場合に対応する.

エネルギー輸送は重要とならないだろう. Subsonic regionの構造を決める際に重要
となる可能性があるけれども, escape velocityに達するような windが発生しうるか
どうかは supersonic regionでの opacityや輻射圧勾配力の変化に依存するので, 結局
windが発生しないという結果には影響を与えないと考えられる.
大きな速度勾配があるwindの中ではDoppler shiftingにより line吸収, 散乱によ

る輻射圧が大きくなる. その場合, 本研究のように Rosseland mean opacityを用い
て評価したのでは輻射圧勾配力を過小評価することになる (Castor et al., 1975). し
かしながら, 今は始原的な組成を持つ星の進化を考えている. 始原的な組成の場合
line-driven windは弱いことがわかっているので (Krtička & Kubát, 2006), この効果
はあまり重要にはならず, 今回の結果には大きく影響しないと考えられる.

1

ρ

dPgas

dr
=

GMr

r2
(Γr − 1) Γr =

Lrad

LEdd
Γr ! 1 (15)
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1

v

dv

dr
=

[
2

r
c2T − 1

ρ

(
∂P

∂T

)

ρ

dT

dr
− GMr

r2

]
/
(
v2 − c2T

)
(19)

1

v

dv

dr
=

[
2

r
c2T − 1

ρ

(
∂Pgas

∂T

)

ρ

dT

dr
+

GM

r2
(Γ− 1)

]
/
(
v2 − c2T

)
(20)

Γ = κLrad
4πGcM

Λ

Ṁw

=
Lrad

Ṁw

+
v2

2
+ wgas + wrad −

GM

r
(21)

Lr∗ = Lrad,b + Ṁ

(
v2b
2

+ wgas,b + wrad,b

)
(22)

dPgas

dr
> 0,

dρ

dr
> 0 (23)
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1.5 原始星の計算 (Hosokawa et al. 2009, 2010, 2012, 2013)
(

∂r

∂Mr

)

t

=
1

4πr2ρ
(31)

(
∂P

∂Mr

)

t

= −GMr

4πr4
(32)

(
∂Lr

∂Mr

)

t

= ϵ− T

(
∂s

∂t

)

Mr

(33)

(
∂s

∂Mr

)

t

=
GMr

4πr4

(
∂s

∂P

)

T

(
Lr

Ls
− 1

)
Cbohm (34)

1.6 メモ欄
1

ρ

(
dPgas

dr
+

dPrad

dr

)
= −GMr

r2
(35)

1

ρ

dPgas

dr
=

GMr

r2
(Γ(r)− 1) (36)

1

ρ

dPgas

dr
=

GMr

r2
(Γ(r)− 1)− v

dv

dr
(37)

Lrad = −16πacr2T 3

3κρ

dT

dr
(38)

Γ(r) = Lrad(r)/LEdd(r) LEdd(r) = 4πcGMr/κ(r) Ṁ = 0.1 M⊙ yr−1

Ṁ = 0.1-1 M⊙ yr−1 M∗ = 1200 M⊙ Γ(r) > 1 Ṁ = 10−3 M⊙ yr−1 Teff < 104 K
H− ∼ 105 M⊙ ϵ = 0.1

Mr, v, ρ, T, Lr, Lrad Mr,∗, v∗, ρ∗, T∗, Lr,∗, Lrad,∗
L∗ ∼ LEdd,es

tgrow = tSal ln

(
MBH

MBH,0

)
ϵ

1− ϵ
, tSal =

σTc

4πGmp
= 0.45 Gyr (39)

tgrow ∼ 0.5 Gyr < tz=7 ∼ 0.77 Gyr MBH ∼ 2 × 109 M⊙ MBH,0 ∼ 105 M⊙
tgrow ∼ 0.84 Gyr > tz=7 ∼ 0.77 Gyr MBH,0 ∼ 100 M⊙

1

v

dv

dr
=

[
2

r

(
∂P

∂ρ

)

T

− 1

ρ

(
∂P

∂T

)

ρ

dT

dr
− GMr

r2

]
/

[
v2 −

(
∂P

∂ρ

)

T

]
(40)

7

Locally super-Eddington

tgrow ∼ 0.84 Gyr > tz=7 ∼ 0.77 Gyr
MBH,seed ∼ 100 M⊙
ṀEdd = LEdd/ϵc2

Ṁacc ∼
MJ

tff
∼ c3s

G
∼ 0.3

(
T

8000 K

)3/2

M⊙ yr−1 (19)

Ṁacc ∼ MJ/tff ∼ c3s/G ∼ 0.3 (T/8000 K)3/2 M⊙ yr−1

Lrad ∼ LEdd,es

Lrad ∼ LEdd,es > LEdd

(κes < κH,κH−)
Ṁacc ∼ 0.1-1 M⊙ yr−1

1

v

dv

dr
=

[
2

r
c2T − 1

ρ

(
∂P

∂T

)

ρ

dT

dr
− GMr

r2

]
/
(
v2 − c2T

)
(20)

1

v

dv

dr
=

[
2

r
c2T − 1

ρ

(
∂Pgas

∂T

)

ρ

dT

dr
+

GM

r2
(Γ− 1)

]
/
(
v2 − c2T

)
(21)

Γ = κLrad
4πGcM

Λ

Ṁw

=
Lrad

Ṁw

+
v2

2
+ wgas + wrad −

GM

r
(22)

Lr∗ = Lrad,b + Ṁ

(
v2b
2

+ wgas,b + wrad,b

)
(23)
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星表面付近ではH,     電離 
によりopacityが増大.

1.3 原始星の計算 (Hosokawa et al. 2009, 2010, 2012, 2013)
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4πr2ρ
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1.4 メモ欄
1

ρ
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dr
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dPrad

dr
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= −GMr
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(14)

1

ρ

dPgas

dr
=

GMr

r2
(Γ(r)− 1) (15)

1

ρ

dPgas

dr
=

GMr

r2
(Γ(r)− 1)− v

dv

dr
(16)

Lrad = −16πacr2T 3

3κρ

dT

dr
(17)

Γ(r) = Lrad(r)/LEdd(r) LEdd(r) = 4πcGMr/κ(r) Ṁacc = 0.1 M⊙ yr−1

Ṁacc = 0.1-1M⊙ yr−1 M∗ = 1200M⊙ Γ(r) > 1 Ṁacc = 10−3 M⊙ yr−1 Teff < 104 K
H− ∼ 105 M⊙ ϵ = 0.1 ∝ κLrad

Ṁacc × tlife ∼ 0.1-1 M⊙ yr−1 × 106 yr ∼ 105-106 M⊙ ∼ 106 yr
Lr, Mr, v, ρ, T, Lrad

Mr,∗, Lr∗ , ρ∗, T∗, Lrad,∗
L∗ ∼ LEdd,es v∗ v → 0 v∗ = αvcT,∗ αv = 10−5 αv = 10−8, 10−3 v ≪ cT αv ≪ 1

tgrow = tSal ln

(
MBH

MBH,seed

)
ϵ

1− ϵ
, tSal =

σTc

4πGmp
= 0.45 Gyr (18)

tgrow ∼ 0.5 Gyr < tz=7 ∼ 0.77 Gyr
MBH ∼ 2× 109 M⊙
MBH,seed ∼ 105 M⊙

3

tgrow ∼ 0.84 Gyr > tz=7 ∼ 0.77 Gyr
MBH,seed ∼ 100 M⊙
ṀEdd = LEdd/ϵc2

Ṁacc ∼
MJ

tff
∼ c3s

G
∼ 0.3

(
T

8000 K

)3/2

M⊙ yr−1 (19)

Ṁacc ∼ MJ/tff ∼ c3s/G ∼ 0.3 (T/8000 K)3/2 M⊙ yr−1

Lrad ∼ LEdd,es

Lrad ∼ LEdd,es > LEdd

(κ > κes)

1

v

dv

dr
=

[
2

r
c2T − 1

ρ

(
∂P

∂T

)

ρ

dT

dr
− GMr

r2

]
/
(
v2 − c2T

)
(20)

1

v

dv

dr
=

[
2

r
c2T − 1

ρ

(
∂Pgas

∂T

)

ρ

dT

dr
+

GM

r2
(Γ− 1)

]
/
(
v2 − c2T

)
(21)

Γ = κLrad
4πGcM

Λ

Ṁw

=
Lrad

Ṁw

+
v2

2
+ wgas + wrad −

GM

r
(22)

Lr∗ = Lrad,b + Ṁ

(
v2b
2

+ wgas,b + wrad,b

)
(23)

4

1.5 原始星の計算 (Hosokawa et al. 2009, 2010, 2012, 2013)
(

∂r

∂Mr

)

t

=
1

4πr2ρ
(31)

(
∂P

∂Mr

)

t

= −GMr

4πr4
(32)

(
∂Lr

∂Mr

)

t

= ϵ− T

(
∂s

∂t

)

Mr

(33)

(
∂s

∂Mr

)

t

=
GMr

4πr4

(
∂s

∂P

)

T

(
Lr

Ls
− 1

)
Cbohm (34)

1.6 メモ欄
1

ρ

(
dPgas

dr
+

dPrad

dr

)
= −GMr

r2
(35)

1

ρ

dPgas

dr
=

GMr

r2
(Γ(r)− 1) (36)

1

ρ

dPgas

dr
=

GMr

r2
(Γ(r)− 1)− v

dv

dr
(37)

Lrad = −16πacr2T 3

3κρ

dT

dr
(38)

Γ(r) = Lrad(r)/LEdd(r) LEdd(r) = 4πcGMr/κ(r) Ṁ = 0.1 M⊙ yr−1

Ṁ = 0.1-1 M⊙ yr−1 M∗ = 1200 M⊙ Γ(r) > 1 Ṁ = 10−3 M⊙ yr−1 Teff < 104 K
H− ∼ 105 M⊙ ϵ = 0.1

Mr, v, ρ, T, Lr, Lrad Mr,∗, v∗, ρ∗, T∗, Lr,∗, Lrad,∗
L∗ ∼ LEdd,es

tgrow = tSal ln

(
MBH

MBH,0

)
ϵ

1− ϵ
, tSal =

σTc

4πGmp
= 0.45 Gyr (39)

tgrow ∼ 0.5 Gyr < tz=7 ∼ 0.77 Gyr MBH ∼ 2 × 109 M⊙ MBH,0 ∼ 105 M⊙
tgrow ∼ 0.84 Gyr > tz=7 ∼ 0.77 Gyr MBH,0 ∼ 100 M⊙

1

v

dv

dr
=

[
2

r

(
∂P

∂ρ

)

T

− 1

ρ

(
∂P

∂T

)

ρ

dT

dr
− GMr

r2

]
/

[
v2 −

(
∂P

∂ρ

)

T

]
(40)
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2. Formulation of Optically Thick Wind



Basic Equations: 
★ Spherical & Steady Flow

Finzi&Wolf 1971
Zytkow1972
Quinn&Paczynski1985

光球半径よりも内側における 
輻射圧による星風加速を考える.

Ro&Matzner2016
Dotan&Shaviv 2012
Nugis&Lamers2002

Kato&Hachisu 1994
Kato&Iben 1992
Lee19901 Steady and Spherical Wind

1.1 Basic Equations

基礎方程式系
v
dv

dr
+

1

ρ

dP

dr
+

GM

r2
= 0 (1)

Ṁ = 4πr2ρv (2)

Λ = Lrad + Ṁ

(
v2

2
+ wgas + wrad −

GM

r

)
(3)

P = P (ρ, T ), e = e(ρ, T ), w = e+
P

ρ
(4)

dT

dr
= − 3κρLrad

16πacr2T 3
, (5)

EOS, Ṁ を微分形に表示して EOM (1)に代入する．代数計算の後，特異点の位
置が明瞭な形に書き直せる．

[
v2 −

(
∂P

∂ρ

)

T

]
1

v

dv

dr
=

2

r

(
∂P

∂ρ

)

T

− 1

ρ

(
∂P

∂T

)

ρ

dT

dr
− GMr

r2
(6)

星表層部の適当な場所での物理量を，wind envelopeの内側における境界条件と
して用いることで，wind envelope解を構成することができる．接合点の半径を r∗と
する．星の構造のデータからMr,∗, ρ∗, P∗, T∗, s∗, e∗, Lr,∗, Lrad,∗, Ls,∗がわかる．v∗は未
知であるので，v∗をパラメタとした解の系列を求めることができる．
接合点の選び方であるが，上記の方程式系を用いる限り，原理的には任意の半径

でよいと考えられる．ここでは，静水圧平衡解において対流層下方にある輻射層の
できるだけ外側の任意の点にとることにする (Fig. ??)．
最後に臨界点 rcを通るという条件 ( vc = v(ρc, Tc), Lrad,c = Lrad(rc,Mc, ρc, Tc) )

により，数学的には supersonic wind解を構成することができる．Photosphereの半
径 rphは，Lrad(rph) = 4πr2phσSBT (rph)4を満たす半径として定義される．
得られた解が物理的であるかの consistency checkとして，以下の条件を満たすか

どうかを考察する．
1) Optically thick windであるかどうか？ r∗ < rc < rphを満たしているか？
2) Outflowの一部が fallbackしないかどうか？ v2ph/2 − GM/rph ≈ v2∞/2 ≥ 0を

満たすか？

1

: specific enthalpy

Do Stellar Winds Prevent Formation of Supermassive Stars by Accretion? 3

wind envelope

protostar

accretion disk

Figure 1. Schematic picture of the stellar winds launched from
the accreting SGPSs.

Ṁwind ≡ 4πr2ρv = const., (2)

where G is the gravitational constant, M∗ the total stellar
mass, Ṁwind the mass outflow rate, and v, P, and ρ corre-
spond to the velocity, total pressure, and density at radius
r, respectively. Since the radiation field is the thermal black
body in good approximation, the radiation pressure is given
by Prad = aT4/3, where a is the radiation constant, and T
the temperature. The total pressure P is given by the sum
of the gas pressure Pgas and the radiation pressure Prad:

P = Pgas + Prad =
R
µ
ρT +

1
3 aT4, (3)

where R is the gas constant, and µ the mean molecular
weight. After integration with respect to r, the energy equa-
tion is

Λ ≡ Lrad + Ṁwind

(
v2

2 + wgas + wrad −
GM∗

r

)
= const., (4)

where wgas = egas + Pgas/ρ is the specific enthalpy of the gas,
with egas the specific internal energy of the gas including the

ionization energy of H, He, and He+, and wrad = 4aT4/3ρ that
of radiation, respectively. The radiative luminosity in the
fluid frame Lrad is calculated by the diffusion approximation:

Lrad = −
16πacr2T3

3κρ
dT
dr
, (5)

where c is the speed of light, and κ the Rosseland mean opac-
ity. For the Rosseland mean opacity, we use the tabulated
values from the OPAL project (Iglesias & Rogers 1996) and
from Alexander & Ferguson (1994) above and below 7000 K,
respectively. We use their tables for the primordial chemical
composition with the hydrogen mass fraction of X = 0.7.

In Eqs. (1-5), we have four unknown functions,
v(r), ρ(r),T (r), and Lrad(r). A wind solution can be obtained
with the proper boundary conditions provided, which we de-
scribe in the next subsection.

2.2 Boundary Conditions

We impose the boundary conditions at the sonic point rs
and at the matching point rm of the star and the wind. The
latter corresponds to the base of the wind.

2.2.1 Condition at the Sonic Point

The sonic point corresponds to the singular point of the
EoM (Eq. 1). Eq. (1) can be rewritten in a form that explic-
itly shows the presence of the singular point, by substituting
the EoC (Eq. 2) and the EoS (Eq. 3) into Eq. (1):

1
v

dv
dr
=

⎡⎢⎢⎢⎢⎣
2
r

c2
T −

1
ρ

(
∂Pgas
∂T

)

ρ

dT
dr
+

GM∗
r2 (Γr − 1)

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
,

(6)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed, and
Γr ≡ Lrad/LEdd the Eddington ratio.

In the wind solutions, the numerator of Eq. (6) should
vanish simultaneously at the sonic point, since the velocity
gradient is required to be finite there (Lamers & Cassinelli
1999). This gives us the following boundary condition:

Γr =
1 −

( 2cT
vesc

)2

1 +
(
∂Pgas
∂Prad

)

ρ

at v = cT, (7)

where vesc ≡
√

2GM∗/r is the escape velocity at radius r.
We obtain a unique stellar wind solution for each set

of radius, density, and temperature (rs, ρs,Ts) at the sonic
point. The velocity vs and the radiation luminosity Lrad,s
at the sonic point are evaluated by using the first boundary
condition (Eq. 7) as vs = cT(ρs,Ts) and Lrad,s = Lrad(rs, ρs,Ts),
respectively. Substituting the evaluated values of vs and
Lrad,s into Eqs. (2) and (4), we can fix Ṁwind and Λ, which
remain constant throughout a wind solution. The veloc-
ity gradient at the sonic point is obtained by applying
the de l’Hopital rule to Eq. (6) (Lamers & Cassinelli 1999;
Nugis & Lamers 2002). The above procedure allows us to
construct one wind solution that smoothly passes through
the sonic point.

2.2.2 Conditions at the Matching Point of Star and Wind

We impose another boundary condition at the base of the
stellar wind to connect physical quantities smoothly from
the star to the wind. We assume that the wind starts blowing
at some radius rm. We regard rm as a free parameter without
specifying how the wind initially arises in the atmosphere.
For a hydrostatic stellar model, we set the matching point
from a layer that satisfies the following two conditions. First,
we require that the mass contained between the matching
and the sonic radii is small and less than 5 % of the stellar
mass. This is because the mass is taken as a constant and
equal to the stellar one in the gravity term of the wind equa-
tion. Second, we require that, around the matching radius,
the energy generation either via nuclear burning or grav-
itational contraction is negligible and the total luminosity
becomes constant in radius (Lr ∼ const.).

For the boundary conditions, we first require that the
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•未知関数:

1.3 原始星の計算 (Hosokawa et al. 2009, 2010, 2012, 2013)
(

∂r

∂Mr

)

t

=
1

4πr2ρ
(10)

(
∂P

∂Mr

)

t

= −GMr

4πr4
(11)

(
∂Lr

∂Mr

)

t

= ϵ− T

(
∂s

∂t

)

Mr

(12)

(
∂s

∂Mr

)

t

=
GMr

4πr4

(
∂s

∂P

)

T

(
Lr

Ls
− 1

)
Cbohm (13)

1.4 メモ欄
1

ρ

(
dPgas

dr
+

dPrad

dr

)
= −GMr

r2
(14)

1

ρ

dPgas

dr
=

GMr

r2
(Γ(r)− 1) (15)

1

ρ

dPgas

dr
=

GMr

r2
(Γ(r)− 1)− v

dv

dr
(16)

Lrad = −16πacr2T 3

3κρ

dT

dr
(17)

Γ(r) = Lrad(r)/LEdd(r) LEdd(r) = 4πcGMr/κ(r) Ṁ = 0.1 M⊙ yr−1

Ṁ = 0.1-1 M⊙ yr−1 M∗ = 1200 M⊙ Γ(r) > 1 Ṁ = 10−3 M⊙ yr−1 Teff < 104 K
H− ∼ 105 M⊙ ϵ = 0.1 ∝ κLrad

0.1-1 M⊙ yr−1 × 106 yr ∼ 105-106 M⊙ ∼ 106 yr
Lr, Mr, v, ρ, T, Lrad Mr,∗, ρ∗, T∗, Lr,∗, Lrad,∗
L∗ ∼ LEdd,es v∗ v → 0 v∗ = αvcT,∗ αv = 10−5 αv = 10−8, 10−3 v ≪ cT αv ≪ 1

tgrow = tSal ln

(
MBH

MBH,0

)
ϵ

1− ϵ
, tSal =

σTc

4πGmp
= 0.45 Gyr (18)

tgrow ∼ 0.5 Gyr < tz=7 ∼ 0.77 Gyr MBH ∼ 2 × 109 M⊙ MBH,0 ∼ 105 M⊙
tgrow ∼ 0.84 Gyr > tz=7 ∼ 0.77 Gyr MBH,0 ∼ 100 M⊙

3

•EoM:

Do Stellar Winds Prevent the Formation of Supermassive Stars by Accretion? 3

2.1 Basic Equations

We focus on the formulation valid for the optically thick
winds (Finzi & Wolf 1971; Żytkow 1972; Quinn & Paczynski
1985; Lee 1990; Kato & Iben 1992; Kato & Hachisu 1994;
Nugis & Lamers 2002; Dotan & Shaviv 2012; Ro & Matzner
2016), which is equivalent to assuming that the wind accel-
eration occurs beneath the photosphere as in the case of the
dense WR wind (e.g., Crowther 2007). The basic equations
governing the wind structure are as follows.

First, the equations of motion (EoM) and continu-
ity (EoC) are

v
dv
dr
+

1
ρ

dP
dr
+

GM∗
r2 = 0, (1)

Ṁwind ≡ 4πr2ρv = const., (2)

where G is the gravitational constant, M∗ the total stellar
mass, Ṁwind the mass outflow rate, and v, P, and ρ corre-
spond to the velocity, total pressure, and density at radius
r, respectively. Since the radiation field is the thermal black
body in good approximation, the radiation pressure is given
by Prad = aT4/3, where a is the radiation constant, and T
the temperature. The total pressure P is given by the sum
of the gas pressure Pgas and the radiation pressure Prad:

P = Pgas + Prad =
R
µ
ρT +

1
3 aT4, (3)

where R is the gas constant, and µ the mean molecular
weight. After integration with respect to r, the energy equa-
tion is

Λ ≡ Lrad + Ṁwind

(
v2

2 + wgas + wrad −
GM∗

r

)
= const., (4)

where wgas = egas + Pgas/ρ is the specific enthalpy of the gas,
with egas the specific internal energy of the gas including the

ionization energy of H, He, and He+, and wrad = 4aT4/3ρ that
of radiation, respectively. The radiative luminosity in the
fluid frame Lrad is calculated by the diffusion approximation:

Lrad = −
16πacr2T3

3κρ
dT
dr
, (5)

where c is the speed of light, and κ the Rosseland mean opac-
ity. For the Rosseland mean opacity, we use the tabulated
values from the OPAL project (Iglesias & Rogers 1996) and
from Alexander & Ferguson (1994) above and below 7000 K,
respectively. We use their tables for the primordial chemical
composition with the hydrogen mass fraction of X = 0.7.

In Eqs. (1-5), we have four unknown functions,
v(r), ρ(r),T (r), and Lrad(r). A wind solution can be obtained
with the proper boundary conditions provided, which we de-
scribe in the next subsection.

2.2 Boundary Conditions

We impose the boundary conditions at the sonic point rs
and at the matching point rm of the star and the wind. The
latter corresponds to the base of the wind.

2.2.1 Condition at the Sonic Point

The sonic point corresponds to the singular point of the
EoM (Eq. 1). Eq. (1) can be rewritten in a form that explic-
itly shows the presence of the singular point, by substituting
the EoC (Eq. 2) and the EoS (Eq. 3) into Eq. (1):

1
v

dv
dr
=

⎡⎢⎢⎢⎢⎣
2
r

c2
T −

1
ρ

(
∂Pgas
∂T

)

ρ

dT
dr
+

GM∗
r2 (Γr − 1)

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
,

(6)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed, and
Γr ≡ Lrad/LEdd the Eddington ratio.

In the wind solutions, the numerator of Eq. (6) should
vanish simultaneously at the sonic point, since the velocity
gradient is required to be finite there (Lamers & Cassinelli
1999). This gives us the following boundary condition:

Γr =
1 −

( 2cT
vesc

)2

1 +
(
∂Pgas
∂Prad

)

ρ

at v = cT, (7)

where vesc ≡
√

2GM∗/r is the escape velocity at radius r.
We obtain a unique stellar wind solution for each set

of radius, density, and temperature (rs, ρs,Ts) at the sonic
point. The velocity vs and the radiation luminosity Lrad,s
at the sonic point are evaluated by using the first boundary
condition (Eq. 7) as vs = cT(ρs,Ts) and Lrad,s = Lrad(rs, ρs,Ts),
respectively. Substituting the evaluated values of vs and
Lrad,s into Eqs. (2) and (4), we can fix Ṁwind and Λ, which
remain constant throughout a wind solution. The veloc-
ity gradient at the sonic point is obtained by applying
the de l’Hopital rule to Eq. (6) (Lamers & Cassinelli 1999;
Nugis & Lamers 2002). The above procedure allows us to
construct one wind solution that smoothly passes through
the sonic point.

2.2.2 Conditions at the Matching Point of Star and Wind

We impose another boundary condition at the base of the
stellar wind to connect physical quantities smoothly from
the star to the wind. We assume that the wind starts blowing
at some radius rm. We regard rm as a free parameter without
specifying how the wind initially arises in the atmosphere.
For a hydrostatic stellar model, we set the matching point
from a layer that satisfies the following two conditions. First,
we require that the mass contained between the matching
and the sonic radii is small and less than 5 % of the stellar
mass. This is because the mass is taken as a constant and
equal to the stellar one in the gravity term of the wind equa-
tion. Second, we require that, around the matching radius,
the energy generation either via nuclear burning or grav-
itational contraction is negligible and the total luminosity
becomes constant in radius (Lr ∼ const.).

For the boundary conditions, we first require that the
density and temperature are continuous across the matching
point rm:

ρ(rm) = ρ∗(rm) and T (rm) = T∗(rm). (8)

where the subscript ∗ indicates the quantities from the (hy-
drostatic) stellar model. Note that the wind velocity is highly
subsonic at rm as long as rm ≪ rs. The first term in Eq.
(1) thus being much smaller than the second term, i.e.,
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2.1 Basic Equations

We focus on the formulation valid for the optically thick
winds (Finzi & Wolf 1971; Żytkow 1972; Quinn & Paczynski
1985; Lee 1990; Kato & Iben 1992; Kato & Hachisu 1994;
Nugis & Lamers 2002; Dotan & Shaviv 2012; Ro & Matzner
2016), which is equivalent to assuming that the wind accel-
eration occurs beneath the photosphere as in the case of the
dense WR wind (e.g., Crowther 2007). The basic equations
governing the wind structure are as follows.

First, the equations of motion (EoM) and continu-
ity (EoC) are

v
dv
dr
+

1
ρ

dP
dr
+

GM∗
r2 = 0, (1)

Ṁwind ≡ 4πr2ρv = const., (2)

where G is the gravitational constant, M∗ the total stellar
mass, Ṁwind the mass outflow rate, and v, P, and ρ corre-
spond to the velocity, total pressure, and density at radius
r, respectively. Since the radiation field is the thermal black
body in good approximation, the radiation pressure is given
by Prad = aT4/3, where a is the radiation constant, and T
the temperature. The total pressure P is given by the sum
of the gas pressure Pgas and the radiation pressure Prad:

P = Pgas + Prad =
R
µ
ρT +

1
3 aT4, (3)

where R is the gas constant, and µ the mean molecular
weight. After integration with respect to r, the energy equa-
tion is

Λ ≡ Lrad + Ṁwind

(
v2

2 + wgas + wrad −
GM∗

r

)
= const., (4)

where wgas = egas + Pgas/ρ is the specific enthalpy of the gas,
with egas the specific internal energy of the gas including the

ionization energy of H, He, and He+, and wrad = 4aT4/3ρ that
of radiation, respectively. The radiative luminosity in the
fluid frame Lrad is calculated by the diffusion approximation:

Lrad = −
16πacr2T3

3κρ
dT
dr
, (5)

where c is the speed of light, and κ the Rosseland mean opac-
ity. For the Rosseland mean opacity, we use the tabulated
values from the OPAL project (Iglesias & Rogers 1996) and
from Alexander & Ferguson (1994) above and below 7000 K,
respectively. We use their tables for the primordial chemical
composition with the hydrogen mass fraction of X = 0.7.

In Eqs. (1-5), we have four unknown functions,
v(r), ρ(r),T (r), and Lrad(r). A wind solution can be obtained
with the proper boundary conditions provided, which we de-
scribe in the next subsection.

2.2 Boundary Conditions

We impose the boundary conditions at the sonic point rs
and at the matching point rm of the star and the wind. The
latter corresponds to the base of the wind.

2.2.1 Condition at the Sonic Point

The sonic point corresponds to the singular point of the
EoM (Eq. 1). Eq. (1) can be rewritten in a form that explic-
itly shows the presence of the singular point, by substituting
the EoC (Eq. 2) and the EoS (Eq. 3) into Eq. (1):

1
v

dv
dr
=

⎡⎢⎢⎢⎢⎣
2
r

c2
T −

1
ρ

(
∂Pgas
∂T

)

ρ

dT
dr
+

GM∗
r2 (Γr − 1)

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
,

(6)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed, and
Γr ≡ Lrad/LEdd the Eddington ratio.

In the wind solutions, the numerator of Eq. (6) should
vanish simultaneously at the sonic point, since the velocity
gradient is required to be finite there (Lamers & Cassinelli
1999). This gives us the following boundary condition:

Γr =
1 −

( 2cT
vesc

)2

1 +
(
∂Pgas
∂Prad

)

ρ

at v = cT, (7)

where vesc ≡
√

2GM∗/r is the escape velocity at radius r.
We obtain a unique stellar wind solution for each set

of radius, density, and temperature (rs, ρs,Ts) at the sonic
point. The velocity vs and the radiation luminosity Lrad,s
at the sonic point are evaluated by using the first boundary
condition (Eq. 7) as vs = cT(ρs,Ts) and Lrad,s = Lrad(rs, ρs,Ts),
respectively. Substituting the evaluated values of vs and
Lrad,s into Eqs. (2) and (4), we can fix Ṁwind and Λ, which
remain constant throughout a wind solution. The veloc-
ity gradient at the sonic point is obtained by applying
the de l’Hopital rule to Eq. (6) (Lamers & Cassinelli 1999;
Nugis & Lamers 2002). The above procedure allows us to
construct one wind solution that smoothly passes through
the sonic point.

2.2.2 Conditions at the Matching Point of Star and Wind

We impose another boundary condition at the base of the
stellar wind to connect physical quantities smoothly from
the star to the wind. We assume that the wind starts blowing
at some radius rm. We regard rm as a free parameter without
specifying how the wind initially arises in the atmosphere.
For a hydrostatic stellar model, we set the matching point
from a layer that satisfies the following two conditions. First,
we require that the mass contained between the matching
and the sonic radii is small and less than 5 % of the stellar
mass. This is because the mass is taken as a constant and
equal to the stellar one in the gravity term of the wind equa-
tion. Second, we require that, around the matching radius,
the energy generation either via nuclear burning or grav-
itational contraction is negligible and the total luminosity
becomes constant in radius (Lr ∼ const.).

For the boundary conditions, we first require that the
density and temperature are continuous across the matching
point rm:

ρ(rm) = ρ∗(rm) and T (rm) = T∗(rm). (8)

where the subscript ∗ indicates the quantities from the (hy-
drostatic) stellar model. Note that the wind velocity is highly
subsonic at rm as long as rm ≪ rs. The first term in Eq.
(1) thus being much smaller than the second term, i.e.,
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2.1 Basic Equations

We focus on the formulation valid for the optically thick
winds (Finzi & Wolf 1971; Żytkow 1972; Quinn & Paczynski
1985; Lee 1990; Kato & Iben 1992; Kato & Hachisu 1994;
Nugis & Lamers 2002; Dotan & Shaviv 2012; Ro & Matzner
2016), which is equivalent to assuming that the wind accel-
eration occurs beneath the photosphere as in the case of the
dense WR wind (e.g., Crowther 2007). The basic equations
governing the wind structure are as follows.

First, the equations of motion (EoM) and continu-
ity (EoC) are

v
dv
dr
+

1
ρ

dP
dr
+

GM∗
r2 = 0, (1)

Ṁwind ≡ 4πr2ρv = const., (2)

where G is the gravitational constant, M∗ the total stellar
mass, Ṁwind the mass outflow rate, and v, P, and ρ corre-
spond to the velocity, total pressure, and density at radius
r, respectively. Since the radiation field is the thermal black
body in good approximation, the radiation pressure is given
by Prad = aT4/3, where a is the radiation constant, and T
the temperature. The total pressure P is given by the sum
of the gas pressure Pgas and the radiation pressure Prad:

P = Pgas + Prad =
R
µ
ρT +

1
3 aT4, (3)

where R is the gas constant, and µ the mean molecular
weight. After integration with respect to r, the energy equa-
tion is

Λ ≡ Lrad + Ṁwind

(
v2

2 + wgas + wrad −
GM∗

r

)
= const., (4)

where wgas = egas + Pgas/ρ is the specific enthalpy of the gas,
with egas the specific internal energy of the gas including the

ionization energy of H, He, and He+, and wrad = 4aT4/3ρ that
of radiation, respectively. The radiative luminosity in the
fluid frame Lrad is calculated by the diffusion approximation:

Lrad = −
16πacr2T3

3κρ
dT
dr
, (5)

where c is the speed of light, and κ the Rosseland mean opac-
ity. For the Rosseland mean opacity, we use the tabulated
values from the OPAL project (Iglesias & Rogers 1996) and
from Alexander & Ferguson (1994) above and below 7000 K,
respectively. We use their tables for the primordial chemical
composition with the hydrogen mass fraction of X = 0.7.

In Eqs. (1-5), we have four unknown functions,
v(r), ρ(r),T (r), and Lrad(r). A wind solution can be obtained
with the proper boundary conditions provided, which we de-
scribe in the next subsection.

2.2 Boundary Conditions

We impose the boundary conditions at the sonic point rs
and at the matching point rm of the star and the wind. The
latter corresponds to the base of the wind.

2.2.1 Condition at the Sonic Point

The sonic point corresponds to the singular point of the
EoM (Eq. 1). Eq. (1) can be rewritten in a form that explic-
itly shows the presence of the singular point, by substituting
the EoC (Eq. 2) and the EoS (Eq. 3) into Eq. (1):

1
v

dv
dr
=

⎡⎢⎢⎢⎢⎣
2
r

c2
T −

1
ρ

(
∂Pgas
∂T

)

ρ

dT
dr
+

GM∗
r2 (Γr − 1)

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
,

(6)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed, and
Γr ≡ Lrad/LEdd the Eddington ratio.

In the wind solutions, the numerator of Eq. (6) should
vanish simultaneously at the sonic point, since the velocity
gradient is required to be finite there (Lamers & Cassinelli
1999). This gives us the following boundary condition:

Γr =
1 −

( 2cT
vesc

)2

1 +
(
∂Pgas
∂Prad

)

ρ

at v = cT, (7)

where vesc ≡
√

2GM∗/r is the escape velocity at radius r.
We obtain a unique stellar wind solution for each set

of radius, density, and temperature (rs, ρs,Ts) at the sonic
point. The velocity vs and the radiation luminosity Lrad,s
at the sonic point are evaluated by using the first boundary
condition (Eq. 7) as vs = cT(ρs,Ts) and Lrad,s = Lrad(rs, ρs,Ts),
respectively. Substituting the evaluated values of vs and
Lrad,s into Eqs. (2) and (4), we can fix Ṁwind and Λ, which
remain constant throughout a wind solution. The veloc-
ity gradient at the sonic point is obtained by applying
the de l’Hopital rule to Eq. (6) (Lamers & Cassinelli 1999;
Nugis & Lamers 2002). The above procedure allows us to
construct one wind solution that smoothly passes through
the sonic point.

2.2.2 Conditions at the Matching Point of Star and Wind

We impose another boundary condition at the base of the
stellar wind to connect physical quantities smoothly from
the star to the wind. We assume that the wind starts blowing
at some radius rm. We regard rm as a free parameter without
specifying how the wind initially arises in the atmosphere.
For a hydrostatic stellar model, we set the matching point
from a layer that satisfies the following two conditions. First,
we require that the mass contained between the matching
and the sonic radii is small and less than 5 % of the stellar
mass. This is because the mass is taken as a constant and
equal to the stellar one in the gravity term of the wind equa-
tion. Second, we require that, around the matching radius,
the energy generation either via nuclear burning or grav-
itational contraction is negligible and the total luminosity
becomes constant in radius (Lr ∼ const.).

For the boundary conditions, we first require that the
density and temperature are continuous across the matching
point rm:

ρ(rm) = ρ∗(rm) and T (rm) = T∗(rm). (8)

where the subscript ∗ indicates the quantities from the (hy-
drostatic) stellar model. Note that the wind velocity is highly
subsonic at rm as long as rm ≪ rs. The first term in Eq.
(1) thus being much smaller than the second term, i.e.,
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2.1 Basic Equations

We focus on the formulation valid for the optically thick
winds (Finzi & Wolf 1971; Żytkow 1972; Quinn & Paczynski
1985; Lee 1990; Kato & Iben 1992; Kato & Hachisu 1994;
Nugis & Lamers 2002; Dotan & Shaviv 2012; Ro & Matzner
2016), which is equivalent to assuming that the wind accel-
eration occurs beneath the photosphere as in the case of the
dense WR wind (e.g., Crowther 2007). The basic equations
governing the wind structure are as follows.

First, the equations of motion (EoM) and continu-
ity (EoC) are

v
dv
dr
+

1
ρ

dP
dr
+

GM∗
r2 = 0, (1)

Ṁwind ≡ 4πr2ρv = const., (2)

where G is the gravitational constant, M∗ the total stellar
mass, Ṁwind the mass outflow rate, and v, P, and ρ corre-
spond to the velocity, total pressure, and density at radius
r, respectively. Since the radiation field is the thermal black
body in good approximation, the radiation pressure is given
by Prad = aT4/3, where a is the radiation constant, and T
the temperature. The total pressure P is given by the sum
of the gas pressure Pgas and the radiation pressure Prad:

P = Pgas + Prad =
R
µ
ρT +

1
3 aT4, (3)

where R is the gas constant, and µ the mean molecular
weight. After integration with respect to r, the energy equa-
tion is

Λ ≡ Lrad + Ṁwind

(
v2

2 + wgas + wrad −
GM∗

r

)
= const., (4)

where wgas = egas + Pgas/ρ is the specific enthalpy of the gas,
with egas the specific internal energy of the gas including the

ionization energy of H, He, and He+, and wrad = 4aT4/3ρ that
of radiation, respectively. The radiative luminosity in the
fluid frame Lrad is calculated by the diffusion approximation:

Lrad = −
16πacr2T3

3κρ
dT
dr
, (5)

where c is the speed of light, and κ the Rosseland mean opac-
ity. For the Rosseland mean opacity, we use the tabulated
values from the OPAL project (Iglesias & Rogers 1996) and
from Alexander & Ferguson (1994) above and below 7000 K,
respectively. We use their tables for the primordial chemical
composition with the hydrogen mass fraction of X = 0.7.

In Eqs. (1-5), we have four unknown functions,
v(r), ρ(r),T (r), and Lrad(r). A wind solution can be obtained
with the proper boundary conditions provided, which we de-
scribe in the next subsection.

2.2 Boundary Conditions

We impose the boundary conditions at the sonic point rs
and at the matching point rm of the star and the wind. The
latter corresponds to the base of the wind.

2.2.1 Condition at the Sonic Point

The sonic point corresponds to the singular point of the
EoM (Eq. 1). Eq. (1) can be rewritten in a form that explic-
itly shows the presence of the singular point, by substituting
the EoC (Eq. 2) and the EoS (Eq. 3) into Eq. (1):

1
v

dv
dr
=

⎡⎢⎢⎢⎢⎣
2
r

c2
T −

1
ρ

(
∂Pgas
∂T

)

ρ

dT
dr
+

GM∗
r2 (Γr − 1)

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
,

(6)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed, and
Γr ≡ Lrad/LEdd the Eddington ratio.

In the wind solutions, the numerator of Eq. (6) should
vanish simultaneously at the sonic point, since the velocity
gradient is required to be finite there (Lamers & Cassinelli
1999). This gives us the following boundary condition:

Γr =
1 −

( 2cT
vesc

)2

1 +
(
∂Pgas
∂Prad

)

ρ

at v = cT, (7)

where vesc ≡
√

2GM∗/r is the escape velocity at radius r.
We obtain a unique stellar wind solution for each set

of radius, density, and temperature (rs, ρs,Ts) at the sonic
point. The velocity vs and the radiation luminosity Lrad,s
at the sonic point are evaluated by using the first boundary
condition (Eq. 7) as vs = cT(ρs,Ts) and Lrad,s = Lrad(rs, ρs,Ts),
respectively. Substituting the evaluated values of vs and
Lrad,s into Eqs. (2) and (4), we can fix Ṁwind and Λ, which
remain constant throughout a wind solution. The veloc-
ity gradient at the sonic point is obtained by applying
the de l’Hopital rule to Eq. (6) (Lamers & Cassinelli 1999;
Nugis & Lamers 2002). The above procedure allows us to
construct one wind solution that smoothly passes through
the sonic point.

2.2.2 Conditions at the Matching Point of Star and Wind

We impose another boundary condition at the base of the
stellar wind to connect physical quantities smoothly from
the star to the wind. We assume that the wind starts blowing
at some radius rm. We regard rm as a free parameter without
specifying how the wind initially arises in the atmosphere.
For a hydrostatic stellar model, we set the matching point
from a layer that satisfies the following two conditions. First,
we require that the mass contained between the matching
and the sonic radii is small and less than 5 % of the stellar
mass. This is because the mass is taken as a constant and
equal to the stellar one in the gravity term of the wind equa-
tion. Second, we require that, around the matching radius,
the energy generation either via nuclear burning or grav-
itational contraction is negligible and the total luminosity
becomes constant in radius (Lr ∼ const.).

For the boundary conditions, we first require that the
density and temperature are continuous across the matching
point rm:

ρ(rm) = ρ∗(rm) and T (rm) = T∗(rm). (8)

where the subscript ∗ indicates the quantities from the (hy-
drostatic) stellar model. Note that the wind velocity is highly
subsonic at rm as long as rm ≪ rs. The first term in Eq.
(1) thus being much smaller than the second term, i.e.,
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2.1 Basic Equations

We focus on the formulation valid for the optically thick
winds (Finzi & Wolf 1971; Żytkow 1972; Quinn & Paczynski
1985; Lee 1990; Kato & Iben 1992; Kato & Hachisu 1994;
Nugis & Lamers 2002; Dotan & Shaviv 2012; Ro & Matzner
2016), which is equivalent to assuming that the wind accel-
eration occurs beneath the photosphere as in the case of the
dense WR wind (e.g., Crowther 2007). The basic equations
governing the wind structure are as follows.

First, the equations of motion (EoM) and continu-
ity (EoC) are

v
dv
dr
+

1
ρ

dP
dr
+

GM∗
r2 = 0, (1)

Ṁwind ≡ 4πr2ρv = const., (2)

where G is the gravitational constant, M∗ the total stellar
mass, Ṁwind the mass outflow rate, and v, P, and ρ corre-
spond to the velocity, total pressure, and density at radius
r, respectively. Since the radiation field is the thermal black
body in good approximation, the radiation pressure is given
by Prad = aT4/3, where a is the radiation constant, and T
the temperature. The total pressure P is given by the sum
of the gas pressure Pgas and the radiation pressure Prad:

P = Pgas + Prad =
R
µ
ρT +

1
3 aT4, (3)

where R is the gas constant, and µ the mean molecular
weight. After integration with respect to r, the energy equa-
tion is

Λ ≡ Lrad + Ṁwind

(
v2

2 + wgas + wrad −
GM∗

r

)
= const., (4)

where wgas = egas + Pgas/ρ is the specific enthalpy of the gas,
with egas the specific internal energy of the gas including the

ionization energy of H, He, and He+, and wrad = 4aT4/3ρ that
of radiation, respectively. The radiative luminosity in the
fluid frame Lrad is calculated by the diffusion approximation:

Lrad = −
16πacr2T3

3κρ
dT
dr
, (5)

where c is the speed of light, and κ the Rosseland mean opac-
ity. For the Rosseland mean opacity, we use the tabulated
values from the OPAL project (Iglesias & Rogers 1996) and
from Alexander & Ferguson (1994) above and below 7000 K,
respectively. We use their tables for the primordial chemical
composition with the hydrogen mass fraction of X = 0.7.

In Eqs. (1-5), we have four unknown functions,
v(r), ρ(r),T (r), and Lrad(r). A wind solution can be obtained
with the proper boundary conditions provided, which we de-
scribe in the next subsection.

2.2 Boundary Conditions

We impose the boundary conditions at the sonic point rs
and at the matching point rm of the star and the wind. The
latter corresponds to the base of the wind.

2.2.1 Condition at the Sonic Point

The sonic point corresponds to the singular point of the
EoM (Eq. 1). Eq. (1) can be rewritten in a form that explic-
itly shows the presence of the singular point, by substituting
the EoC (Eq. 2) and the EoS (Eq. 3) into Eq. (1):

1
v

dv
dr
=

⎡⎢⎢⎢⎢⎣
2
r

c2
T −

1
ρ

(
∂Pgas
∂T

)

ρ

dT
dr
+

GM∗
r2 (Γr − 1)

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
,

(6)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed, and
Γr ≡ Lrad/LEdd the Eddington ratio.

In the wind solutions, the numerator of Eq. (6) should
vanish simultaneously at the sonic point, since the velocity
gradient is required to be finite there (Lamers & Cassinelli
1999). This gives us the following boundary condition:

Γr =
1 −

( 2cT
vesc

)2

1 +
(
∂Pgas
∂Prad

)

ρ

at v = cT, (7)

where vesc ≡
√

2GM∗/r is the escape velocity at radius r.
We obtain a unique stellar wind solution for each set

of radius, density, and temperature (rs, ρs,Ts) at the sonic
point. The velocity vs and the radiation luminosity Lrad,s
at the sonic point are evaluated by using the first boundary
condition (Eq. 7) as vs = cT(ρs,Ts) and Lrad,s = Lrad(rs, ρs,Ts),
respectively. Substituting the evaluated values of vs and
Lrad,s into Eqs. (2) and (4), we can fix Ṁwind and Λ, which
remain constant throughout a wind solution. The veloc-
ity gradient at the sonic point is obtained by applying
the de l’Hopital rule to Eq. (6) (Lamers & Cassinelli 1999;
Nugis & Lamers 2002). The above procedure allows us to
construct one wind solution that smoothly passes through
the sonic point.

2.2.2 Conditions at the Matching Point of Star and Wind

We impose another boundary condition at the base of the
stellar wind to connect physical quantities smoothly from
the star to the wind. We assume that the wind starts blowing
at some radius rm. We regard rm as a free parameter without
specifying how the wind initially arises in the atmosphere.
For a hydrostatic stellar model, we set the matching point
from a layer that satisfies the following two conditions. First,
we require that the mass contained between the matching
and the sonic radii is small and less than 5 % of the stellar
mass. This is because the mass is taken as a constant and
equal to the stellar one in the gravity term of the wind equa-
tion. Second, we require that, around the matching radius,
the energy generation either via nuclear burning or grav-
itational contraction is negligible and the total luminosity
becomes constant in radius (Lr ∼ const.).

For the boundary conditions, we first require that the
density and temperature are continuous across the matching
point rm:

ρ(rm) = ρ∗(rm) and T (rm) = T∗(rm). (8)

where the subscript ∗ indicates the quantities from the (hy-
drostatic) stellar model. Note that the wind velocity is highly
subsonic at rm as long as rm ≪ rs. The first term in Eq.
(1) thus being much smaller than the second term, i.e.,
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Figure 1. Schematic picture of the stellar winds launched from
the accreting SGPSs.

Ṁwind ≡ 4πr2ρv = const., (2)

where G is the gravitational constant, M∗ the total stellar
mass, Ṁwind the mass outflow rate, and v, P, and ρ corre-
spond to the velocity, total pressure, and density at radius
r, respectively. Since the radiation field is the thermal black
body in good approximation, the radiation pressure is given
by Prad = aT4/3, where a is the radiation constant, and T
the temperature. The total pressure P is given by the sum
of the gas pressure Pgas and the radiation pressure Prad:

P = Pgas + Prad =
R
µ
ρT +

1
3 aT4, (3)

where R is the gas constant, and µ the mean molecular
weight. After integration with respect to r, the energy equa-
tion is

Λ ≡ Lrad + Ṁwind

(
v2

2 + wgas + wrad −
GM∗

r

)
= const., (4)

where wgas = egas + Pgas/ρ is the specific enthalpy of the gas,
with egas the specific internal energy of the gas including the

ionization energy of H, He, and He+, and wrad = 4aT4/3ρ that
of radiation, respectively. The radiative luminosity in the
fluid frame Lrad is calculated by the diffusion approximation:

Lrad = −
16πacr2T3

3κρ
dT
dr
, (5)

where c is the speed of light, and κ the Rosseland mean opac-
ity. For the Rosseland mean opacity, we use the tabulated
values from the OPAL project (Iglesias & Rogers 1996) and
from Alexander & Ferguson (1994) above and below 7000 K,
respectively. We use their tables for the primordial chemical
composition with the hydrogen mass fraction of X = 0.7.

In Eqs. (1-5), we have four unknown functions,
v(r), ρ(r),T (r), and Lrad(r). A wind solution can be obtained
with the proper boundary conditions provided, which we de-
scribe in the next subsection.

2.2 Boundary Conditions

We impose the boundary conditions at the sonic point rs
and at the matching point rm of the star and the wind. The
latter corresponds to the base of the wind.

2.2.1 Condition at the Sonic Point

The sonic point corresponds to the singular point of the
EoM (Eq. 1). Eq. (1) can be rewritten in a form that explic-
itly shows the presence of the singular point, by substituting
the EoC (Eq. 2) and the EoS (Eq. 3) into Eq. (1):

1
v

dv
dr
=

⎡⎢⎢⎢⎢⎣
2
r

c2
T −

1
ρ

(
∂Pgas
∂T

)

ρ

dT
dr
+

GM∗
r2 (Γr − 1)

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
,

(6)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed, and
Γr ≡ Lrad/LEdd the Eddington ratio.

In the wind solutions, the numerator of Eq. (6) should
vanish simultaneously at the sonic point, since the velocity
gradient is required to be finite there (Lamers & Cassinelli
1999). This gives us the following boundary condition:

Γr =
1 −

( 2cT
vesc

)2

1 +
(
∂Pgas
∂Prad

)

ρ

at v = cT, (7)

where vesc ≡
√

2GM∗/r is the escape velocity at radius r.
We obtain a unique stellar wind solution for each set

of radius, density, and temperature (rs, ρs,Ts) at the sonic
point. The velocity vs and the radiation luminosity Lrad,s
at the sonic point are evaluated by using the first boundary
condition (Eq. 7) as vs = cT(ρs,Ts) and Lrad,s = Lrad(rs, ρs,Ts),
respectively. Substituting the evaluated values of vs and
Lrad,s into Eqs. (2) and (4), we can fix Ṁwind and Λ, which
remain constant throughout a wind solution. The veloc-
ity gradient at the sonic point is obtained by applying
the de l’Hopital rule to Eq. (6) (Lamers & Cassinelli 1999;
Nugis & Lamers 2002). The above procedure allows us to
construct one wind solution that smoothly passes through
the sonic point.

2.2.2 Conditions at the Matching Point of Star and Wind

We impose another boundary condition at the base of the
stellar wind to connect physical quantities smoothly from
the star to the wind. We assume that the wind starts blowing
at some radius rm. We regard rm as a free parameter without
specifying how the wind initially arises in the atmosphere.
For a hydrostatic stellar model, we set the matching point
from a layer that satisfies the following two conditions. First,
we require that the mass contained between the matching
and the sonic radii is small and less than 5 % of the stellar
mass. This is because the mass is taken as a constant and
equal to the stellar one in the gravity term of the wind equa-
tion. Second, we require that, around the matching radius,
the energy generation either via nuclear burning or grav-
itational contraction is negligible and the total luminosity
becomes constant in radius (Lr ∼ const.).

For the boundary conditions, we first require that the
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Figure 1. Schematic picture of the stellar winds launched from
the accreting SGPSs.

Ṁwind ≡ 4πr2ρv = const., (2)

where G is the gravitational constant, M∗ the total stellar
mass, Ṁwind the mass outflow rate, and v, P, and ρ corre-
spond to the velocity, total pressure, and density at radius
r, respectively. Since the radiation field is the thermal black
body in good approximation, the radiation pressure is given
by Prad = aT4/3, where a is the radiation constant, and T
the temperature. The total pressure P is given by the sum
of the gas pressure Pgas and the radiation pressure Prad:

P = Pgas + Prad =
R
µ
ρT +

1
3 aT4, (3)

where R is the gas constant, and µ the mean molecular
weight. After integration with respect to r, the energy equa-
tion is

Λ ≡ Lrad + Ṁwind

(
v2

2 + wgas + wrad −
GM∗

r

)
= const., (4)

where wgas = egas + Pgas/ρ is the specific enthalpy of the gas,
with egas the specific internal energy of the gas including the

ionization energy of H, He, and He+, and wrad = 4aT4/3ρ that
of radiation, respectively. The radiative luminosity in the
fluid frame Lrad is calculated by the diffusion approximation:

Lrad = −
16πacr2T3

3κρ
dT
dr
, (5)

where c is the speed of light, and κ the Rosseland mean opac-
ity. For the Rosseland mean opacity, we use the tabulated
values from the OPAL project (Iglesias & Rogers 1996) and
from Alexander & Ferguson (1994) above and below 7000 K,
respectively. We use their tables for the primordial chemical
composition with the hydrogen mass fraction of X = 0.7.

In Eqs. (1-5), we have four unknown functions,
v(r), ρ(r),T (r), and Lrad(r). A wind solution can be obtained
with the proper boundary conditions provided, which we de-
scribe in the next subsection.

2.2 Boundary Conditions

We impose the boundary conditions at the sonic point rs
and at the matching point rm of the star and the wind. The
latter corresponds to the base of the wind.

2.2.1 Condition at the Sonic Point

The sonic point corresponds to the singular point of the
EoM (Eq. 1). Eq. (1) can be rewritten in a form that explic-
itly shows the presence of the singular point, by substituting
the EoC (Eq. 2) and the EoS (Eq. 3) into Eq. (1):

1
v

dv
dr
=

⎡⎢⎢⎢⎢⎣
2
r

c2
T −

1
ρ

(
∂Pgas
∂T

)

ρ

dT
dr
+

GM∗
r2 (Γr − 1)

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
,

(6)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed, and
Γr ≡ Lrad/LEdd the Eddington ratio.

In the wind solutions, the numerator of Eq. (6) should
vanish simultaneously at the sonic point, since the velocity
gradient is required to be finite there (Lamers & Cassinelli
1999). This gives us the following boundary condition:

Γr =
1 −

( 2cT
vesc

)2

1 +
(
∂Pgas
∂Prad

)

ρ

at v = cT, (7)

where vesc ≡
√

2GM∗/r is the escape velocity at radius r.
We obtain a unique stellar wind solution for each set

of radius, density, and temperature (rs, ρs,Ts) at the sonic
point. The velocity vs and the radiation luminosity Lrad,s
at the sonic point are evaluated by using the first boundary
condition (Eq. 7) as vs = cT(ρs,Ts) and Lrad,s = Lrad(rs, ρs,Ts),
respectively. Substituting the evaluated values of vs and
Lrad,s into Eqs. (2) and (4), we can fix Ṁwind and Λ, which
remain constant throughout a wind solution. The veloc-
ity gradient at the sonic point is obtained by applying
the de l’Hopital rule to Eq. (6) (Lamers & Cassinelli 1999;
Nugis & Lamers 2002). The above procedure allows us to
construct one wind solution that smoothly passes through
the sonic point.

2.2.2 Conditions at the Matching Point of Star and Wind

We impose another boundary condition at the base of the
stellar wind to connect physical quantities smoothly from
the star to the wind. We assume that the wind starts blowing
at some radius rm. We regard rm as a free parameter without
specifying how the wind initially arises in the atmosphere.
For a hydrostatic stellar model, we set the matching point
from a layer that satisfies the following two conditions. First,
we require that the mass contained between the matching
and the sonic radii is small and less than 5 % of the stellar
mass. This is because the mass is taken as a constant and
equal to the stellar one in the gravity term of the wind equa-
tion. Second, we require that, around the matching radius,
the energy generation either via nuclear burning or grav-
itational contraction is negligible and the total luminosity
becomes constant in radius (Lr ∼ const.).

For the boundary conditions, we first require that the
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2.1 Basic Equations

We focus on the formulation valid for the optically thick
winds (Finzi & Wolf 1971; Żytkow 1972; Quinn & Paczynski
1985; Lee 1990; Kato & Iben 1992; Kato & Hachisu 1994;
Nugis & Lamers 2002; Dotan & Shaviv 2012; Ro & Matzner
2016), which is equivalent to assuming that the wind accel-
eration occurs beneath the photosphere as in the case of the
dense WR wind (e.g., Crowther 2007). The basic equations
governing the wind structure are as follows.

First, the equations of motion (EoM) and continu-
ity (EoC) are

v
dv
dr
+

1
ρ

dP
dr
+

GM∗
r2 = 0, (1)

Ṁwind ≡ 4πr2ρv = const., (2)

where G is the gravitational constant, M∗ the total stellar
mass, Ṁwind the mass outflow rate, and v, P, and ρ corre-
spond to the velocity, total pressure, and density at radius
r, respectively. Since the radiation field is the thermal black
body in good approximation, the radiation pressure is given
by Prad = aT4/3, where a is the radiation constant, and T
the temperature. The total pressure P is given by the sum
of the gas pressure Pgas and the radiation pressure Prad:

P = Pgas + Prad =
R
µ
ρT +

1
3 aT4, (3)

where R is the gas constant, and µ the mean molecular
weight. After integration with respect to r, the energy equa-
tion is

Λ ≡ Lrad + Ṁwind

(
v2

2 + wgas + wrad −
GM∗

r

)
= const., (4)

where wgas = egas + Pgas/ρ is the specific enthalpy of the gas,
with egas the specific internal energy of the gas including the

ionization energy of H, He, and He+, and wrad = 4aT4/3ρ that
of radiation, respectively. The radiative luminosity in the
fluid frame Lrad is calculated by the diffusion approximation:

Lrad = −
16πacr2T3

3κρ
dT
dr
, (5)

where c is the speed of light, and κ the Rosseland mean opac-
ity. For the Rosseland mean opacity, we use the tabulated
values from the OPAL project (Iglesias & Rogers 1996) and
from Alexander & Ferguson (1994) above and below 7000 K,
respectively. We use their tables for the primordial chemical
composition with the hydrogen mass fraction of X = 0.7.

In Eqs. (1-5), we have four unknown functions,
v(r), ρ(r),T (r), and Lrad(r). A wind solution can be obtained
with the proper boundary conditions provided, which we de-
scribe in the next subsection.

2.2 Boundary Conditions

We impose the boundary conditions at the sonic point rs
and at the matching point rm of the star and the wind. The
latter corresponds to the base of the wind.

2.2.1 Condition at the Sonic Point

The sonic point corresponds to the singular point of the
EoM (Eq. 1). Eq. (1) can be rewritten in a form that explic-
itly shows the presence of the singular point, by substituting
the EoC (Eq. 2) and the EoS (Eq. 3) into Eq. (1):

1
v

dv
dr
=

⎡⎢⎢⎢⎢⎣
2
r

c2
T −

1
ρ

(
∂Pgas
∂T

)

ρ

dT
dr
+

GM∗
r2 (Γr − 1)

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
,

(6)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed, and
Γr ≡ Lrad/LEdd the Eddington ratio.

In the wind solutions, the numerator of Eq. (6) should
vanish simultaneously at the sonic point, since the velocity
gradient is required to be finite there (Lamers & Cassinelli
1999). This gives us the following boundary condition:

Γr =
1 −

( 2cT
vesc

)2

1 +
(
∂Pgas
∂Prad

)

ρ

at v = cT, (7)

where vesc ≡
√

2GM∗/r is the escape velocity at radius r.
We obtain a unique stellar wind solution for each set

of radius, density, and temperature (rs, ρs,Ts) at the sonic
point. The velocity vs and the radiation luminosity Lrad,s
at the sonic point are evaluated by using the first boundary
condition (Eq. 7) as vs = cT(ρs,Ts) and Lrad,s = Lrad(rs, ρs,Ts),
respectively. Substituting the evaluated values of vs and
Lrad,s into Eqs. (2) and (4), we can fix Ṁwind and Λ, which
remain constant throughout a wind solution. The veloc-
ity gradient at the sonic point is obtained by applying
the de l’Hopital rule to Eq. (6) (Lamers & Cassinelli 1999;
Nugis & Lamers 2002). The above procedure allows us to
construct one wind solution that smoothly passes through
the sonic point.

2.2.2 Conditions at the Matching Point of Star and Wind

We impose another boundary condition at the base of the
stellar wind to connect physical quantities smoothly from
the star to the wind. We assume that the wind starts blowing
at some radius rm. We regard rm as a free parameter without
specifying how the wind initially arises in the atmosphere.
For a hydrostatic stellar model, we set the matching point
from a layer that satisfies the following two conditions. First,
we require that the mass contained between the matching
and the sonic radii is small and less than 5 % of the stellar
mass. This is because the mass is taken as a constant and
equal to the stellar one in the gravity term of the wind equa-
tion. Second, we require that, around the matching radius,
the energy generation either via nuclear burning or grav-
itational contraction is negligible and the total luminosity
becomes constant in radius (Lr ∼ const.).

For the boundary conditions, we first require that the
density and temperature are continuous across the matching
point rm:

ρ(rm) = ρ∗(rm) and T (rm) = T∗(rm). (8)

where the subscript ∗ indicates the quantities from the (hy-
drostatic) stellar model. Note that the wind velocity is highly
subsonic at rm as long as rm ≪ rs. The first term in Eq.
(1) thus being much smaller than the second term, i.e.,
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2.1 Basic Equations

We focus on the formulation valid for the optically thick
winds (Finzi & Wolf 1971; Żytkow 1972; Quinn & Paczynski
1985; Lee 1990; Kato & Iben 1992; Kato & Hachisu 1994;
Nugis & Lamers 2002; Dotan & Shaviv 2012; Ro & Matzner
2016), which is equivalent to assuming that the wind accel-
eration occurs beneath the photosphere as in the case of the
dense WR wind (e.g., Crowther 2007). The basic equations
governing the wind structure are as follows.

First, the equations of motion (EoM) and continu-
ity (EoC) are

v
dv
dr
+

1
ρ

dP
dr
+

GM∗
r2 = 0, (1)

Ṁwind ≡ 4πr2ρv = const., (2)

where G is the gravitational constant, M∗ the total stellar
mass, Ṁwind the mass outflow rate, and v, P, and ρ corre-
spond to the velocity, total pressure, and density at radius
r, respectively. Since the radiation field is the thermal black
body in good approximation, the radiation pressure is given
by Prad = aT4/3, where a is the radiation constant, and T
the temperature. The total pressure P is given by the sum
of the gas pressure Pgas and the radiation pressure Prad:

P = Pgas + Prad =
R
µ
ρT +

1
3 aT4, (3)

where R is the gas constant, and µ the mean molecular
weight. After integration with respect to r, the energy equa-
tion is

Λ ≡ Lrad + Ṁwind

(
v2

2 + wgas + wrad −
GM∗

r

)
= const., (4)

where wgas = egas + Pgas/ρ is the specific enthalpy of the gas,
with egas the specific internal energy of the gas including the

ionization energy of H, He, and He+, and wrad = 4aT4/3ρ that
of radiation, respectively. The radiative luminosity in the
fluid frame Lrad is calculated by the diffusion approximation:

Lrad = −
16πacr2T3

3κρ
dT
dr
, (5)

where c is the speed of light, and κ the Rosseland mean opac-
ity. For the Rosseland mean opacity, we use the tabulated
values from the OPAL project (Iglesias & Rogers 1996) and
from Alexander & Ferguson (1994) above and below 7000 K,
respectively. We use their tables for the primordial chemical
composition with the hydrogen mass fraction of X = 0.7.

In Eqs. (1-5), we have four unknown functions,
v(r), ρ(r),T (r), and Lrad(r). A wind solution can be obtained
with the proper boundary conditions provided, which we de-
scribe in the next subsection.

2.2 Boundary Conditions

We impose the boundary conditions at the sonic point rs
and at the matching point rm of the star and the wind. The
latter corresponds to the base of the wind.

2.2.1 Condition at the Sonic Point

The sonic point corresponds to the singular point of the
EoM (Eq. 1). Eq. (1) can be rewritten in a form that explic-
itly shows the presence of the singular point, by substituting
the EoC (Eq. 2) and the EoS (Eq. 3) into Eq. (1):

1
v

dv
dr
=

⎡⎢⎢⎢⎢⎣
2
r

c2
T −

1
ρ

(
∂Pgas
∂T

)

ρ

dT
dr
+

GM∗
r2 (Γr − 1)

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
,

(6)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed, and
Γr ≡ Lrad/LEdd the Eddington ratio.

In the wind solutions, the numerator of Eq. (6) should
vanish simultaneously at the sonic point, since the velocity
gradient is required to be finite there (Lamers & Cassinelli
1999). This gives us the following boundary condition:

Γr =
1 −

( 2cT
vesc

)2

1 +
(
∂Pgas
∂Prad

)

ρ

at v = cT, (7)

where vesc ≡
√

2GM∗/r is the escape velocity at radius r.
We obtain a unique stellar wind solution for each set

of radius, density, and temperature (rs, ρs,Ts) at the sonic
point. The velocity vs and the radiation luminosity Lrad,s
at the sonic point are evaluated by using the first boundary
condition (Eq. 7) as vs = cT(ρs,Ts) and Lrad,s = Lrad(rs, ρs,Ts),
respectively. Substituting the evaluated values of vs and
Lrad,s into Eqs. (2) and (4), we can fix Ṁwind and Λ, which
remain constant throughout a wind solution. The veloc-
ity gradient at the sonic point is obtained by applying
the de l’Hopital rule to Eq. (6) (Lamers & Cassinelli 1999;
Nugis & Lamers 2002). The above procedure allows us to
construct one wind solution that smoothly passes through
the sonic point.

2.2.2 Conditions at the Matching Point of Star and Wind

We impose another boundary condition at the base of the
stellar wind to connect physical quantities smoothly from
the star to the wind. We assume that the wind starts blowing
at some radius rm. We regard rm as a free parameter without
specifying how the wind initially arises in the atmosphere.
For a hydrostatic stellar model, we set the matching point
from a layer that satisfies the following two conditions. First,
we require that the mass contained between the matching
and the sonic radii is small and less than 5 % of the stellar
mass. This is because the mass is taken as a constant and
equal to the stellar one in the gravity term of the wind equa-
tion. Second, we require that, around the matching radius,
the energy generation either via nuclear burning or grav-
itational contraction is negligible and the total luminosity
becomes constant in radius (Lr ∼ const.).

For the boundary conditions, we first require that the
density and temperature are continuous across the matching
point rm:

ρ(rm) = ρ∗(rm) and T (rm) = T∗(rm). (8)

where the subscript ∗ indicates the quantities from the (hy-
drostatic) stellar model. Note that the wind velocity is highly
subsonic at rm as long as rm ≪ rs. The first term in Eq.
(1) thus being much smaller than the second term, i.e.,
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2.1 Basic Equations

We focus on the formulation valid for the optically thick
winds (Finzi & Wolf 1971; Żytkow 1972; Quinn & Paczynski
1985; Lee 1990; Kato & Iben 1992; Kato & Hachisu 1994;
Nugis & Lamers 2002; Dotan & Shaviv 2012; Ro & Matzner
2016), which is equivalent to assuming that the wind accel-
eration occurs beneath the photosphere as in the case of the
dense WR wind (e.g., Crowther 2007). The basic equations
governing the wind structure are as follows.

First, the equations of motion (EoM) and continu-
ity (EoC) are

v
dv
dr
+

1
ρ

dP
dr
+

GM∗
r2 = 0, (1)

Ṁwind ≡ 4πr2ρv = const., (2)

where G is the gravitational constant, M∗ the total stellar
mass, Ṁwind the mass outflow rate, and v, P, and ρ corre-
spond to the velocity, total pressure, and density at radius
r, respectively. Since the radiation field is the thermal black
body in good approximation, the radiation pressure is given
by Prad = aT4/3, where a is the radiation constant, and T
the temperature. The total pressure P is given by the sum
of the gas pressure Pgas and the radiation pressure Prad:

P = Pgas + Prad =
R
µ
ρT +

1
3 aT4, (3)

where R is the gas constant, and µ the mean molecular
weight. After integration with respect to r, the energy equa-
tion is

Λ ≡ Lrad + Ṁwind

(
v2

2 + wgas + wrad −
GM∗

r

)
= const., (4)

where wgas = egas + Pgas/ρ is the specific enthalpy of the gas,
with egas the specific internal energy of the gas including the

ionization energy of H, He, and He+, and wrad = 4aT4/3ρ that
of radiation, respectively. The radiative luminosity in the
fluid frame Lrad is calculated by the diffusion approximation:

Lrad = −
16πacr2T3

3κρ
dT
dr
, (5)

where c is the speed of light, and κ the Rosseland mean opac-
ity. For the Rosseland mean opacity, we use the tabulated
values from the OPAL project (Iglesias & Rogers 1996) and
from Alexander & Ferguson (1994) above and below 7000 K,
respectively. We use their tables for the primordial chemical
composition with the hydrogen mass fraction of X = 0.7.

In Eqs. (1-5), we have four unknown functions,
v(r), ρ(r),T (r), and Lrad(r). A wind solution can be obtained
with the proper boundary conditions provided, which we de-
scribe in the next subsection.

2.2 Boundary Conditions

We impose the boundary conditions at the sonic point rs
and at the matching point rm of the star and the wind. The
latter corresponds to the base of the wind.

2.2.1 Condition at the Sonic Point

The sonic point corresponds to the singular point of the
EoM (Eq. 1). Eq. (1) can be rewritten in a form that explic-
itly shows the presence of the singular point, by substituting
the EoC (Eq. 2) and the EoS (Eq. 3) into Eq. (1):

1
v

dv
dr
=

⎡⎢⎢⎢⎢⎣
2
r

c2
T −

1
ρ

(
∂Pgas
∂T

)

ρ

dT
dr
+

GM∗
r2 (Γr − 1)

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
,

(6)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed, and
Γr ≡ Lrad/LEdd the Eddington ratio.

In the wind solutions, the numerator of Eq. (6) should
vanish simultaneously at the sonic point, since the velocity
gradient is required to be finite there (Lamers & Cassinelli
1999). This gives us the following boundary condition:

Γr =
1 −

( 2cT
vesc

)2

1 +
(
∂Pgas
∂Prad

)

ρ

at v = cT, (7)

where vesc ≡
√

2GM∗/r is the escape velocity at radius r.
We obtain a unique stellar wind solution for each set

of radius, density, and temperature (rs, ρs,Ts) at the sonic
point. The velocity vs and the radiation luminosity Lrad,s
at the sonic point are evaluated by using the first boundary
condition (Eq. 7) as vs = cT(ρs,Ts) and Lrad,s = Lrad(rs, ρs,Ts),
respectively. Substituting the evaluated values of vs and
Lrad,s into Eqs. (2) and (4), we can fix Ṁwind and Λ, which
remain constant throughout a wind solution. The veloc-
ity gradient at the sonic point is obtained by applying
the de l’Hopital rule to Eq. (6) (Lamers & Cassinelli 1999;
Nugis & Lamers 2002). The above procedure allows us to
construct one wind solution that smoothly passes through
the sonic point.

2.2.2 Conditions at the Matching Point of Star and Wind

We impose another boundary condition at the base of the
stellar wind to connect physical quantities smoothly from
the star to the wind. We assume that the wind starts blowing
at some radius rm. We regard rm as a free parameter without
specifying how the wind initially arises in the atmosphere.
For a hydrostatic stellar model, we set the matching point
from a layer that satisfies the following two conditions. First,
we require that the mass contained between the matching
and the sonic radii is small and less than 5 % of the stellar
mass. This is because the mass is taken as a constant and
equal to the stellar one in the gravity term of the wind equa-
tion. Second, we require that, around the matching radius,
the energy generation either via nuclear burning or grav-
itational contraction is negligible and the total luminosity
becomes constant in radius (Lr ∼ const.).

For the boundary conditions, we first require that the
density and temperature are continuous across the matching
point rm:

ρ(rm) = ρ∗(rm) and T (rm) = T∗(rm). (8)

where the subscript ∗ indicates the quantities from the (hy-
drostatic) stellar model. Note that the wind velocity is highly
subsonic at rm as long as rm ≪ rs. The first term in Eq.
(1) thus being much smaller than the second term, i.e.,
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Figure 1. Schematic picture of the stellar winds launched from
the accreting SGPSs.

Ṁwind ≡ 4πr2ρv = const., (2)

where G is the gravitational constant, M∗ the total stellar
mass, Ṁwind the mass outflow rate, and v, P, and ρ corre-
spond to the velocity, total pressure, and density at radius
r, respectively. Since the radiation field is the thermal black
body in good approximation, the radiation pressure is given
by Prad = aT4/3, where a is the radiation constant, and T
the temperature. The total pressure P is given by the sum
of the gas pressure Pgas and the radiation pressure Prad:

P = Pgas + Prad =
R
µ
ρT +

1
3 aT4, (3)

where R is the gas constant, and µ the mean molecular
weight. After integration with respect to r, the energy equa-
tion is

Λ ≡ Lrad + Ṁwind

(
v2

2 + wgas + wrad −
GM∗

r

)
= const., (4)

where wgas = egas + Pgas/ρ is the specific enthalpy of the gas,
with egas the specific internal energy of the gas including the

ionization energy of H, He, and He+, and wrad = 4aT4/3ρ that
of radiation, respectively. The radiative luminosity in the
fluid frame Lrad is calculated by the diffusion approximation:

Lrad = −
16πacr2T3

3κρ
dT
dr
, (5)

where c is the speed of light, and κ the Rosseland mean opac-
ity. For the Rosseland mean opacity, we use the tabulated
values from the OPAL project (Iglesias & Rogers 1996) and
from Alexander & Ferguson (1994) above and below 7000 K,
respectively. We use their tables for the primordial chemical
composition with the hydrogen mass fraction of X = 0.7.

In Eqs. (1-5), we have four unknown functions,
v(r), ρ(r),T (r), and Lrad(r). A wind solution can be obtained
with the proper boundary conditions provided, which we de-
scribe in the next subsection.

2.2 Boundary Conditions

We impose the boundary conditions at the sonic point rs
and at the matching point rm of the star and the wind. The
latter corresponds to the base of the wind.

2.2.1 Condition at the Sonic Point

The sonic point corresponds to the singular point of the
EoM (Eq. 1). Eq. (1) can be rewritten in a form that explic-
itly shows the presence of the singular point, by substituting
the EoC (Eq. 2) and the EoS (Eq. 3) into Eq. (1):

1
v

dv
dr
=

⎡⎢⎢⎢⎢⎣
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c2
T −

1
ρ

(
∂Pgas
∂T

)

ρ

dT
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+

GM∗
r2 (Γr − 1)

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
,

(6)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed, and
Γr ≡ Lrad/LEdd the Eddington ratio.

In the wind solutions, the numerator of Eq. (6) should
vanish simultaneously at the sonic point, since the velocity
gradient is required to be finite there (Lamers & Cassinelli
1999). This gives us the following boundary condition:

Γr =
1 −

( 2cT
vesc

)2

1 +
(
∂Pgas
∂Prad

)

ρ

at v = cT, (7)

where vesc ≡
√

2GM∗/r is the escape velocity at radius r.
We obtain a unique stellar wind solution for each set

of radius, density, and temperature (rs, ρs,Ts) at the sonic
point. The velocity vs and the radiation luminosity Lrad,s
at the sonic point are evaluated by using the first boundary
condition (Eq. 7) as vs = cT(ρs,Ts) and Lrad,s = Lrad(rs, ρs,Ts),
respectively. Substituting the evaluated values of vs and
Lrad,s into Eqs. (2) and (4), we can fix Ṁwind and Λ, which
remain constant throughout a wind solution. The veloc-
ity gradient at the sonic point is obtained by applying
the de l’Hopital rule to Eq. (6) (Lamers & Cassinelli 1999;
Nugis & Lamers 2002). The above procedure allows us to
construct one wind solution that smoothly passes through
the sonic point.

2.2.2 Conditions at the Matching Point of Star and Wind

We impose another boundary condition at the base of the
stellar wind to connect physical quantities smoothly from
the star to the wind. We assume that the wind starts blowing
at some radius rm. We regard rm as a free parameter without
specifying how the wind initially arises in the atmosphere.
For a hydrostatic stellar model, we set the matching point
from a layer that satisfies the following two conditions. First,
we require that the mass contained between the matching
and the sonic radii is small and less than 5 % of the stellar
mass. This is because the mass is taken as a constant and
equal to the stellar one in the gravity term of the wind equa-
tion. Second, we require that, around the matching radius,
the energy generation either via nuclear burning or grav-
itational contraction is negligible and the total luminosity
becomes constant in radius (Lr ∼ const.).

For the boundary conditions, we first require that the
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density and temperature are continuous across the matching
point rm:

ρ(rm) = ρ∗(rm) and T (rm) = T∗(rm). (8)

where the subscript ∗ indicates the quantities from the (hy-
drostatic) stellar model. Note that the wind velocity is highly
subsonic at rm as long as rm ≪ rs. The first term in Eq.
(1) thus being much smaller than the second term, i.e.,
v |dv/dr | ≪ ρ−1 |dPgas/dr |, so that the gas is almost in the
hydrostatic equilibrium around rm, i.e., the density and tem-
perature of the wind asymptotically approach those of the
hydrostatic stellar model. Second, without the energy source
in the envelope, the energy flux must be continuous across
rm:

L∗(rm) =
[
Lrad + Ṁwind

(
v2

2 + wgas + wrad

)]
rm

= Λ+
GM∗
rm

Ṁwind,

(9)

where L∗(rm) is the total luminosity of the star at rm.

2.2.3 Constructing the Wind Solution Connected to a
Stellar Model at a Matching Point

With our four boundary conditions, one at the sonic point
and three at the matching point, we can find four unknown
functions v(r), ρ(r),T (r), and Lrad(r) to construct a stellar
wind solution smoothly connected to the hydrostatic model.

The numerical integration is performed in the following
way. For a given matching point rm, we obtain the total lumi-
nosity L∗(rm) from the hydrostatic stellar model. We guess
the density and temperature at the sonic point (ρs, Ts) and
find the sonic radius rs by using the boundary condition
Eq. (9) with L∗(rm). Then, we integrate Eqs. (1-5) numeri-
cally inward from rs to rm. This is repeated with improving
the guess for (ρs, Ts) until the two boundary conditions at
rm (Eq. 8) are satisfied. At this moment, we obtain a unique
wind solution in the subsonic region, as well as the constants
of the motion, Ṁwind and Λ. The structure in the outer su-
personic region can be solved as an initial value problem
from the sonic point determined in the procedure above.

3 CLASSIFICATION OF WIND SOLUTIONS

In this section, before discussing the proper wind solutions
connected to the hydrostatic stellar model at the matching
point, we see the general features of wind solutions. For this
purpose, we here calculate a wind solution passing through
the sonic point for each given set of (rs, ρs,Ts), and do not
try to make it connect smoothly to the hydrostatic solution
(see Section 2).

In Figure 2, we illustrate the stellar wind solutions for
M∗ = 100 M⊙, Ts = 2.5×105 K, rs = 50 R⊙, and four different
values of density ρs = 9.65, 9.71, 9.85, 10.5× 10−9 g cm−3. The
velocity (top), density (middle), and temperature (bottom)
profiles are shown. For the different values of ρs, the struc-
ture in the subsonic region is similar to each other. On the
other hand, the structure in the supersonic region largely
differs, which allows us to classify the solutions into the fol-
lowing two types:

i) stalled wind solution:
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Figure 2. Stellar wind solutions for M∗ = 100 M⊙, Ts = 2.5×105 K,
and rs = 50 R⊙. In each panel, black, red, green, and blue lines
correspond to ρs = 9.65, 9.71, 9.85, and 10.5 × 10−9 g cm−3, respec-
tively. The velocity (upper), density (middle) and temperature
profiles (lower) are shown. The filled circle in each panel indicates
the sonic point. In the upper panel, the isothermal sound speed
cT (dashed) is also shown and the grey-shaded region indicates
velocities exceeding the local escape velocity vesc.

In some solutions, for example that with ρs = 9.65 ×
10−9 g cm−3, the velocity reaches the maximum at some
radius and then decreases monotonically. We call this type
of solutions as the stalled wind solutions. In this case, we
stop the integration when the Mach number falls below 1.5.

ii) ever accelerating wind solution:
In some solutions, for example other cases (ρs ≥ 9.71 ×

10−9 g cm−3) shown in Figure 2, the velocity continues in-
creasing monotonically up to ∼ 200 km s−1. We call this type
of solutions as the ever accelerating wind solution. In this
case, we stop the integration at the photosphere, which is
defined as the radius where the temperature becomes equal
to the effective temperature Teff = (Lrad/4πr2σSB)1/4, since
our formalism is only valid in the optically thick regime, i.e.,
inside the photosphere.

Figure 3 shows the force balance for the two types of
the solutions ρs = 9.65 × 10−9 g cm−3 (lower panel; stalled
solution) and 9.71 × 10−9 g cm−3 (upper panel; ever acceler-
ating solution). In the subsonic region, the acceleration term
is much smaller than the total (gas and radiation) pressure
gradient, i.e., the hydrostatic equilibrium holds well, in both
cases. Using the equation of hydrostatic equilibrium

1
ρ

dPgas
dr

=
GM∗

r2 (Γr − 1), (10)

and the fact that the Eddington ratio Γr is almost constant
because of the constancy of the opacity and radiative lu-
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density and temperature are continuous across the matching
point rm:

ρ(rm) = ρ∗(rm) and T (rm) = T∗(rm). (8)

where the subscript ∗ indicates the quantities from the (hy-
drostatic) stellar model. Note that the wind velocity is highly
subsonic at rm as long as rm ≪ rs. The first term in Eq.
(1) thus being much smaller than the second term, i.e.,
v |dv/dr | ≪ ρ−1 |dPgas/dr |, so that the gas is almost in the
hydrostatic equilibrium around rm, i.e., the density and tem-
perature of the wind asymptotically approach those of the
hydrostatic stellar model. Second, without the energy source
in the envelope, the energy flux must be continuous across
rm:

L∗(rm) =
[
Lrad + Ṁwind

(
v2

2 + wgas + wrad

)]
rm

= Λ+
GM∗
rm

Ṁwind,

(9)

where L∗(rm) is the total luminosity of the star at rm.

2.2.3 Constructing the Wind Solution Connected to a
Stellar Model at a Matching Point

With our four boundary conditions, one at the sonic point
and three at the matching point, we can find four unknown
functions v(r), ρ(r),T (r), and Lrad(r) to construct a stellar
wind solution smoothly connected to the hydrostatic model.

The numerical integration is performed in the following
way. For a given matching point rm, we obtain the total lumi-
nosity L∗(rm) from the hydrostatic stellar model. We guess
the density and temperature at the sonic point (ρs, Ts) and
find the sonic radius rs by using the boundary condition
Eq. (9) with L∗(rm). Then, we integrate Eqs. (1-5) numeri-
cally inward from rs to rm. This is repeated with improving
the guess for (ρs, Ts) until the two boundary conditions at
rm (Eq. 8) are satisfied. At this moment, we obtain a unique
wind solution in the subsonic region, as well as the constants
of the motion, Ṁwind and Λ. The structure in the outer su-
personic region can be solved as an initial value problem
from the sonic point determined in the procedure above.

3 CLASSIFICATION OF WIND SOLUTIONS

In this section, before discussing the proper wind solutions
connected to the hydrostatic stellar model at the matching
point, we see the general features of wind solutions. For this
purpose, we here calculate a wind solution passing through
the sonic point for each given set of (rs, ρs,Ts), and do not
try to make it connect smoothly to the hydrostatic solution
(see Section 2).

In Figure 2, we illustrate the stellar wind solutions for
M∗ = 100 M⊙, Ts = 2.5×105 K, rs = 50 R⊙, and four different
values of density ρs = 9.65, 9.71, 9.85, 10.5× 10−9 g cm−3. The
velocity (top), density (middle), and temperature (bottom)
profiles are shown. For the different values of ρs, the struc-
ture in the subsonic region is similar to each other. On the
other hand, the structure in the supersonic region largely
differs, which allows us to classify the solutions into the fol-
lowing two types:

i) stalled wind solution:
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Figure 2. Stellar wind solutions for M∗ = 100 M⊙, Ts = 2.5×105 K,
and rs = 50 R⊙. In each panel, black, red, green, and blue lines
correspond to ρs = 9.65, 9.71, 9.85, and 10.5 × 10−9 g cm−3, respec-
tively. The velocity (upper), density (middle) and temperature
profiles (lower) are shown. The filled circle in each panel indicates
the sonic point. In the upper panel, the isothermal sound speed
cT (dashed) is also shown and the grey-shaded region indicates
velocities exceeding the local escape velocity vesc.

In some solutions, for example that with ρs = 9.65 ×
10−9 g cm−3, the velocity reaches the maximum at some
radius and then decreases monotonically. We call this type
of solutions as the stalled wind solutions. In this case, we
stop the integration when the Mach number falls below 1.5.

ii) ever accelerating wind solution:
In some solutions, for example other cases (ρs ≥ 9.71 ×

10−9 g cm−3) shown in Figure 2, the velocity continues in-
creasing monotonically up to ∼ 200 km s−1. We call this type
of solutions as the ever accelerating wind solution. In this
case, we stop the integration at the photosphere, which is
defined as the radius where the temperature becomes equal
to the effective temperature Teff = (Lrad/4πr2σSB)1/4, since
our formalism is only valid in the optically thick regime, i.e.,
inside the photosphere.

Figure 3 shows the force balance for the two types of
the solutions ρs = 9.65 × 10−9 g cm−3 (lower panel; stalled
solution) and 9.71 × 10−9 g cm−3 (upper panel; ever acceler-
ating solution). In the subsonic region, the acceleration term
is much smaller than the total (gas and radiation) pressure
gradient, i.e., the hydrostatic equilibrium holds well, in both
cases. Using the equation of hydrostatic equilibrium

1
ρ

dPgas
dr

=
GM∗

r2 (Γr − 1), (10)

and the fact that the Eddington ratio Γr is almost constant
because of the constancy of the opacity and radiative lu-
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Figure 9. Same as Figure 7, but for the stellar model with Ṁacc =
0.1 M⊙ yr−1 and M∗ = 1000 M⊙. In each panel, the blue, green, red,
and black lines correspond to the results for rm = 6000, 5500, 5000,
and 4500 R⊙, respectively.
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Figure 10. Same as Figure 7, but for the stellar model with
Ṁacc = 0.1 M⊙ yr−1 and M∗ = 104 M⊙. In each panel, the blue,
green, red, and black lines correspond to the results for rm =
16000, 14000, 13000, and 12000 R⊙, respectively.
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Figure 11. Same as Figure 7, but for the stellar model with
Ṁacc = 1.0 M⊙ yr−1 and M∗ = 1000 M⊙. In each panel, the blue,
green, red, and black lines correspond to the results with rm =
6000, 5500, 5000, and 4500 R⊙, respectively.

cape velocity increases with the stellar mass as vesc,∗ ∝ M1/4
∗

from the relation R∗ ∝ M1/2
∗ for the SGPSs (Hosokawa et al.

2012). Whereas the mass-loss rates are mathematically de-
termined as Ṁwind = 2.3, 1.4, 0.92, 0.54 M⊙ yr−1 (Ṁwind =
3.1, 2.1, 1.3, 0.73 M⊙ yr−1) for the 1000 M⊙ (104 M⊙) models,
such steady winds can not be launched from these stars and
prevent the mass growth.

For the flow to be accelerated to the supersonic regime,
the matching point must be located outside a certain ra-
dius, which is rm,min ≃ 4500 R⊙ (12000 R⊙) for the M∗ =
1000 M⊙ (104 M⊙) case. As seen in Figures 9 and 10, the
velocity gradient at the sonic point becomes smaller for
the smaller matching radius and it eventually becomes even
negative for the matching radius below the threshold value
rm,min and thus the flow cannot reach the supersonic regime.
For this reason, we here consider only the matching points
outside this threshold rm > rm,min.

Hence, with the accretion rate of Ṁacc = 0.1 M⊙ yr−1,
the mass loss by stellar winds does not prevent SGPSs from
growing up at least to 104 M⊙. Without more massive SGPS
models, we can not examine the effect of stellar winds on the
SGPS evolution for M∗ ≥ 104 M⊙. We expect, however, that
a SGPS reaches the supermassive regime, since successful
wind solutions exist only for M∗ ! 200 M⊙, according to the
analytical estimate in Section 3 (Eq. 13).

4.2 Cases with Ṁacc = 1.0 M⊙ yr−1

Here, we consider the cases with the higher accretion
rate of Ṁacc = 1.0 M⊙ yr−1. In this case, the proto-
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Figure 6. Same as Figure 3, but for the wind solution matched
with the hydrostatic envelope: the radiation pressure gradi-
ent (red), gas pressure gradient (blue), acceleration term (green),
and gravity (black). Dashed parts of lines show that the force
is in the negative (inward) direction. The stellar parameters are
Ṁacc = 0.1 M⊙ yr−1 and M∗ = 100 M⊙. The matching point (filled
square) is located at rm = 1700 R⊙. The sonic point is indicated
by the filled circle.

radius, and that the stellar mass acquisition via accretion is
thus not prevented by the wind mass loss.

In the middle panel of Figure 7, we can see that, with
smaller matching radius rm, the outflowing envelope has
more extended structure with lower density at the sonic
point. On the other hand, the temperature at the sonic
point, which is located just inside the opacity peak (see Fig-
ure 8 upper), is ≃ 104 K for all the cases (Figure 7 lower)
because of very strong temperature-dependence of the opac-
ity around this value.

The maximum value of the local Eddington ratio Γr,max
is lower for the inner matching point case (Figure 8 lower).
This is because the density above the sonic point r > rs be-
comes lower for smaller rm, which results in the lower opac-
ity and thus the smaller Γr,max. In particular, Γr,max never
reaches unity for rm smaller than 1500 R⊙.

4.1.3 Dependence on the Stellar Mass

Next, we examine the stellar wind solutions for more massive
SGPSs with the same accretion rate Ṁacc = 0.1 M⊙ yr−1.
The wind solutions for the 1000 and 104 M⊙ stars are shown
in Figures 9 and 10, respectively. Both stellar models have
the extended envelopes with the radii R∗ ≃ 7000 R⊙ (1000
M⊙) and 18000 R⊙ (104 M⊙). The 95 % of the total stellar
mass is enclosed within 2000 R⊙ for the 1000 M⊙ model and
500 R⊙ for the 104 M⊙ model, respectively. The matching
radii are chosen at rm = 6000, 5500, 5000, and 4500 R⊙ for
1000 M⊙, and rm = 16000, 14000, 13000, and 12000 R⊙ for
104 M⊙, respectively.

All these solutions for the 1000 and 104 M⊙ stars are
again the stalled ones as in the case of the 100 M⊙ model:
the flow starts to decelerate after reaching the sonic point
without reaching the escape velocity. Note also that the
maximum velocity in the wind remains much below the es-
cape velocity vesc,∗ for more massive models since the es-
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Figure 7. Effect of different matching radius on the wind struc-
ture. Shown are the velocity (upper), density (middle), and tem-
perature (lower) profiles for the solutions with the same stellar
parameters Ṁacc = 0.1 M⊙ yr−1 and M∗ = 100 M⊙ but with dif-
ferent matching radii rm = 1800 (blue), 1700 (green), 1600 (red),
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Figure 4. The wind solution for Ṁacc = 0.1 M⊙ yr−1 and M∗ =
100 M⊙, with the matching point at rm = 1700 R⊙ (the filled
square). In the upper panel, the wind velocity (solid) is shown
along with the isothermal sound speed (dotted). The upper grey-
shaded region indicates the region where velocity exceeds the local
escape velocity. The middle and lower panels show the density and
temperature profiles, respectively. Also shown in these panels are
the profiles for the hydrostatic star (dashed).

prevent the stellar growth at this early stage, the star cannot
reach the supermassive regime M∗ ∼ 104-105 M⊙. We thus
study the case of M∗ = 100 M⊙, still in the early stage of the
SGPSs, before considering more massive regime in Section
4.1.3. Here, the matching point rm is taken outside 1300 R⊙,
which encompasses more than 95 % of the total stellar mass.

In Figure 4, we show the wind solution with the match-
ing point at rm = 1700 R⊙ (the filled square). The veloc-
ity, density and temperature profiles are presented in the
top, middle and bottom panels, respectively. The flow is ini-
tially subsonic with Mach number < 0.1 around the match-
ing point and then becomes supersonic at rs ≃ 2600 R⊙. The
flow, however, decelerates after taking the maximum veloc-
ity at ≃ 2700 R⊙, i.e., it is the stalled solution. The wind
solution (red solid) has more extended structure with lower
density than in the hydrostatic model (black dashed). Note
that, unlike the hydrostatic case having the density inversion
around r = 2000 R⊙, the wind solution does not have such
structure and the flow is just accelerated by the radiation
pressure.

Figure 5 shows the radial distributions of the Rosse-
land mean opacity κ (upper panel) and the local Edding-
ton ratio Γr (lower panel). The radiative luminosity remains
sub-Eddington, i.e., Γr < 1, throughout the subsonic re-
gion. Around the opacity bump at ≃ 2700 R⊙ due to the
bound-free absorption of H atoms and H− ions, a thin super-
Eddington layer appears just outside the sonic point. The
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Figure 5. Radial distributions of the Rosseland mean opacity
κ (upper) and the local Eddington ratio Γr (lower) for the wind
solution with Ṁacc = 0.1 M⊙ yr−1 and M∗ = 100 M⊙. The matching
point (filled square) is located at rm = 1700 R⊙. The sonic point
is indicated by the filled circle.

sharp drop of the opacity outside of it due to the hydro-
gen recombination below 104 K, however, pushes back the
Eddington ratio again below unity for r ! 2700 R⊙.

Figure 6 shows the force balance for this case. We see
that the radiation pressure (red) dominates the gas pres-
sure (blue) everywhere. Since the pressure gradient is almost
in balance with the gravity (black), hydrostatic equilibrium
still holds approximately in the subsonic region. The accel-
eration term (green) gradually increases outward and takes
the maximum in the supersonic region at r ≃ 2700 R⊙. How-
ever, the acceleration term then declines dramatically in the
outer region owing to the decrease of the radiation pressure
force, which is in proportion to the opacity κ.

4.1.2 Dependence on the Matching Radius

Next, we investigate how the wind structure changes with
varying matching radius rm. Figures 7 and 8 present the wind
solutions for different matching radii with the same M∗ =
100 M⊙ SGPS model. In each figure, the blue, green, red,
and black lines represent those with the different matching
radii of rm = 1800, 1700, 1600, and 1500 R⊙, respectively.

The upper panel of Figure 7 shows that the velocity
structure is qualitatively similar to each other even with
the different matching radii: the flow velocity increases and
becomes supersonic at some point, but start decreasing be-
fore exceeding the escape velocity owing to the sharp de-
crease of opacity and radiation force due to recombination
of hydrogen (upper panel of Figure 8), as mentioned in Sec-
tion 4.1.1. With the smaller rm, the flows have the mass-loss
rates Ṁwind = 1.2, 0.83, 0.55, 0.42 M⊙ yr−1, which could have
a great impact on the stellar growth if the wind is success-
fully launched. All of them, however, belong to the stalled
wind solutions, which implies that the steady wind is not
launched from this stellar model regardless of the matching
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Figure 4. The wind solution for Ṁacc = 0.1 M⊙ yr−1 and M∗ =
100 M⊙, with the matching point at rm = 1700 R⊙ (the filled
square). In the upper panel, the wind velocity (solid) is shown
along with the isothermal sound speed (dotted). The upper grey-
shaded region indicates the region where velocity exceeds the local
escape velocity. The middle and lower panels show the density and
temperature profiles, respectively. Also shown in these panels are
the profiles for the hydrostatic star (dashed).

prevent the stellar growth at this early stage, the star cannot
reach the supermassive regime M∗ ∼ 104-105 M⊙. We thus
study the case of M∗ = 100 M⊙, still in the early stage of the
SGPSs, before considering more massive regime in Section
4.1.3. Here, the matching point rm is taken outside 1300 R⊙,
which encompasses more than 95 % of the total stellar mass.

In Figure 4, we show the wind solution with the match-
ing point at rm = 1700 R⊙ (the filled square). The veloc-
ity, density and temperature profiles are presented in the
top, middle and bottom panels, respectively. The flow is ini-
tially subsonic with Mach number < 0.1 around the match-
ing point and then becomes supersonic at rs ≃ 2600 R⊙. The
flow, however, decelerates after taking the maximum veloc-
ity at ≃ 2700 R⊙, i.e., it is the stalled solution. The wind
solution (red solid) has more extended structure with lower
density than in the hydrostatic model (black dashed). Note
that, unlike the hydrostatic case having the density inversion
around r = 2000 R⊙, the wind solution does not have such
structure and the flow is just accelerated by the radiation
pressure.

Figure 5 shows the radial distributions of the Rosse-
land mean opacity κ (upper panel) and the local Edding-
ton ratio Γr (lower panel). The radiative luminosity remains
sub-Eddington, i.e., Γr < 1, throughout the subsonic re-
gion. Around the opacity bump at ≃ 2700 R⊙ due to the
bound-free absorption of H atoms and H− ions, a thin super-
Eddington layer appears just outside the sonic point. The
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Figure 5. Radial distributions of the Rosseland mean opacity
κ (upper) and the local Eddington ratio Γr (lower) for the wind
solution with Ṁacc = 0.1 M⊙ yr−1 and M∗ = 100 M⊙. The matching
point (filled square) is located at rm = 1700 R⊙. The sonic point
is indicated by the filled circle.

sharp drop of the opacity outside of it due to the hydro-
gen recombination below 104 K, however, pushes back the
Eddington ratio again below unity for r ! 2700 R⊙.

Figure 6 shows the force balance for this case. We see
that the radiation pressure (red) dominates the gas pres-
sure (blue) everywhere. Since the pressure gradient is almost
in balance with the gravity (black), hydrostatic equilibrium
still holds approximately in the subsonic region. The accel-
eration term (green) gradually increases outward and takes
the maximum in the supersonic region at r ≃ 2700 R⊙. How-
ever, the acceleration term then declines dramatically in the
outer region owing to the decrease of the radiation pressure
force, which is in proportion to the opacity κ.

4.1.2 Dependence on the Matching Radius

Next, we investigate how the wind structure changes with
varying matching radius rm. Figures 7 and 8 present the wind
solutions for different matching radii with the same M∗ =
100 M⊙ SGPS model. In each figure, the blue, green, red,
and black lines represent those with the different matching
radii of rm = 1800, 1700, 1600, and 1500 R⊙, respectively.

The upper panel of Figure 7 shows that the velocity
structure is qualitatively similar to each other even with
the different matching radii: the flow velocity increases and
becomes supersonic at some point, but start decreasing be-
fore exceeding the escape velocity owing to the sharp de-
crease of opacity and radiation force due to recombination
of hydrogen (upper panel of Figure 8), as mentioned in Sec-
tion 4.1.1. With the smaller rm, the flows have the mass-loss
rates Ṁwind = 1.2, 0.83, 0.55, 0.42 M⊙ yr−1, which could have
a great impact on the stellar growth if the wind is success-
fully launched. All of them, however, belong to the stalled
wind solutions, which implies that the steady wind is not
launched from this stellar model regardless of the matching
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WN models, we suppose that Z̃ is identical with the metal-
licity Z in solar composition (Grevesse & Noels 1993), while
in WC models, the mass fractions of C and O are enhanced
by dXC = 0.4 and dXO = 0.1, i.e., Z̃ = Z + dXC + dXO. In each
model, we consider three different metallicities of Z = 1, 2,
and 4 Z⊙ with Z⊙ = 0.02 the solar metallicity.

Wind Clumping

According to the detailed modeling of WR atmo-
sphere with radiation hydrodynamics, wind clumping
is considered to be indispensable for reproducing the
SED (Hamann & Koesterke 1998). We include this effect
by mimicking the functional form used in Hillier & Miller
(1999). The clump is optically thin and its volume filling
factor fV is

fV(r) = D−1 + (1 − D−1) exp
(
− v(r) − vcl

vcl

)
, v(r) ≥ vcl. (17)

where D is the clumping factor and we fix vcl = 200 km s−1 in
this paper (Hillier & Miller 1999). At v(r) ≥ vcl, the opacity
is modified as κ(ρ,T ) → κ(ρ/ fV,T ) (Gräfener et al. 2012).

We also consider the case of vcl = 1.1v(rs) ≃ v(rs). In this
case, wind clumping and the opacity enhancement become
effective in the entire supersonic region.

T (105 K)

Teff = T (rph) τ(rph) = 3 vcl ≃ v(rs) D = 100 ρcl = fclρ (18)

dLr

dr
= 4πr2ρϵnuc, (19)

Ṁw,NL ∝ L1.29
∗ Y1.7Z0.5 (20)

3 RESULTS

3.1 WN Models without Wind Clumping

First, we show the stellar structure of a WN model with
M∗ = 48 M⊙, Z = 1 Z⊙, and D = 1 (Figure 1). In this model,
the matching point and the sonic point (filled circle) are lo-
cated at rm ≃ 1 R⊙ and rs ≃ 2.5 R⊙, respectively. While the
wind velocity is sufficiently subsonic (v ! 1 cm s−1) around
the matching radius, it is steeply accelerated to a supersonic
speed at the sonic radius (panel a). It finally reaches a con-
stant speed of v∞ ∼ 8 × 107 cm s−1, which is smaller than
the observed wind velocity of WN stars by a factor of a
few (Hamann et al. 2006). In our formulation, the mass-loss
rate is determined uniquely as an eigenvalue of the equa-
tions. In this model, we find Ṁw ≃ 10−4 M⊙ yr−1, which
corresponds to the high end of the observed mass-loss rates.

The density and temperature profiles show rapid decline
around rs (panels b and c). In the supersonic region, density
decreases inversely proportional to the square of radius, ρ ∝
r−2, since the wind velocity is almost constant there. We find
that the radiation pressure dominates the gas pressure over
the supersonic region, while they are almost the same order
of magnitude in the hydrostatic core and subsonic wind.

The luminosity is almost constant (Lph ≃ 1.7 × 106 L⊙)
throughout the wind envelope (panel d). According to the
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Figure 1. Stellar structures of a WN model with M∗ = 48 M⊙,
Z = 1 Z⊙, and D = 1. In each panel, the filled circle shows the
location of the sonic point. Panel a): The velocity structure of
the wind. The purple line shows the wind velocity, the green
line isothermal sound speed, and the grey-shaded region where
v(r ) ≥ vesc (r ) holds. Panel b): The density profile. Panel c): The
temperature profile. Panel d): The luminosity structure. The pur-
ple line shows the total luminosity and the green one the local
Eddington luminosity.
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Figure 2. The opacity structure in the wind envelope of the WN
model with M∗ = 48 M⊙, Z = 1 Z⊙, and D = 1.

mass-luminosity relation obtained from the hydrostatic W-R
models (Langer 1989; Schaerer & Maeder 1992):

log
(

L∗
L⊙

)
= 3.03 + 2.70 log

(
M∗
M⊙

)
− 0.46

(
log

(
M∗
M⊙

))2
, (21)

the stellar luminosity is evaluated as L∗ ≃ 1.85×106 L⊙ with
M∗ = 48 M⊙, which is consistent with our result.

For wind acceleration, the presence of the super-
Eddington layer becomes a key. While the luminosity is
sub-Eddington in the subsonic region, it turns into super-
Eddington beyond the sonic point. At r ∼ 4 R⊙, however, it
returns to sub-Eddington again. Around this point, the wind
acceleration stops and the wind velocity begins to decrease
gradually. The super-Eddington layer is induced by the iron
opacity bump at T ≃ 2 × 105 K, which can be confirmed
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Figure 4. The wind solution for Ṁacc = 0.1 M⊙ yr−1 and M∗ =
100 M⊙, with the matching point at rm = 1700 R⊙ (the filled
square). In the upper panel, the wind velocity (solid) is shown
along with the isothermal sound speed (dotted). The upper grey-
shaded region indicates the region where velocity exceeds the local
escape velocity. The middle and lower panels show the density and
temperature profiles, respectively. Also shown in these panels are
the profiles for the hydrostatic star (dashed).

prevent the stellar growth at this early stage, the star cannot
reach the supermassive regime M∗ ∼ 104-105 M⊙. We thus
study the case of M∗ = 100 M⊙, still in the early stage of the
SGPSs, before considering more massive regime in Section
4.1.3. Here, the matching point rm is taken outside 1300 R⊙,
which encompasses more than 95 % of the total stellar mass.

In Figure 4, we show the wind solution with the match-
ing point at rm = 1700 R⊙ (the filled square). The veloc-
ity, density and temperature profiles are presented in the
top, middle and bottom panels, respectively. The flow is ini-
tially subsonic with Mach number < 0.1 around the match-
ing point and then becomes supersonic at rs ≃ 2600 R⊙. The
flow, however, decelerates after taking the maximum veloc-
ity at ≃ 2700 R⊙, i.e., it is the stalled solution. The wind
solution (red solid) has more extended structure with lower
density than in the hydrostatic model (black dashed). Note
that, unlike the hydrostatic case having the density inversion
around r = 2000 R⊙, the wind solution does not have such
structure and the flow is just accelerated by the radiation
pressure.

Figure 5 shows the radial distributions of the Rosse-
land mean opacity κ (upper panel) and the local Edding-
ton ratio Γr (lower panel). The radiative luminosity remains
sub-Eddington, i.e., Γr < 1, throughout the subsonic re-
gion. Around the opacity bump at ≃ 2700 R⊙ due to the
bound-free absorption of H atoms and H− ions, a thin super-
Eddington layer appears just outside the sonic point. The
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Figure 5. Radial distributions of the Rosseland mean opacity
κ (upper) and the local Eddington ratio Γr (lower) for the wind
solution with Ṁacc = 0.1 M⊙ yr−1 and M∗ = 100 M⊙. The matching
point (filled square) is located at rm = 1700 R⊙. The sonic point
is indicated by the filled circle.

sharp drop of the opacity outside of it due to the hydro-
gen recombination below 104 K, however, pushes back the
Eddington ratio again below unity for r ! 2700 R⊙.

Figure 6 shows the force balance for this case. We see
that the radiation pressure (red) dominates the gas pres-
sure (blue) everywhere. Since the pressure gradient is almost
in balance with the gravity (black), hydrostatic equilibrium
still holds approximately in the subsonic region. The accel-
eration term (green) gradually increases outward and takes
the maximum in the supersonic region at r ≃ 2700 R⊙. How-
ever, the acceleration term then declines dramatically in the
outer region owing to the decrease of the radiation pressure
force, which is in proportion to the opacity κ.

4.1.2 Dependence on the Matching Radius

Next, we investigate how the wind structure changes with
varying matching radius rm. Figures 7 and 8 present the wind
solutions for different matching radii with the same M∗ =
100 M⊙ SGPS model. In each figure, the blue, green, red,
and black lines represent those with the different matching
radii of rm = 1800, 1700, 1600, and 1500 R⊙, respectively.

The upper panel of Figure 7 shows that the velocity
structure is qualitatively similar to each other even with
the different matching radii: the flow velocity increases and
becomes supersonic at some point, but start decreasing be-
fore exceeding the escape velocity owing to the sharp de-
crease of opacity and radiation force due to recombination
of hydrogen (upper panel of Figure 8), as mentioned in Sec-
tion 4.1.1. With the smaller rm, the flows have the mass-loss
rates Ṁwind = 1.2, 0.83, 0.55, 0.42 M⊙ yr−1, which could have
a great impact on the stellar growth if the wind is success-
fully launched. All of them, however, belong to the stalled
wind solutions, which implies that the steady wind is not
launched from this stellar model regardless of the matching
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Wind Structure: Temperature & Force 
Sonic pointを通過後すぐに 
温度が~ 10000 Kを下回る. 

星風中で水素の中性化が進む.

Opacityの急激な低下に伴い 
輻射圧勾配力も急激に減衰.

星風は      に達する前に 
減速されてしまう. 

2.3 原始星の計算 (Hosokawa et al. 2009, 2010, 2012, 2013)
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3κρ
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(17)

Γ(r) = Lrad(r)/LEdd(r) ∼ 1100 R⊙ LEdd(r) = 4πcGMr/κ(r) Ṁacc = 0.1 M⊙ yr−1

Ṁacc = 0.1-1M⊙ yr−1 M∗ = 1200M⊙ M∗ = 60M⊙ Γ(r) ! 1 Ṁacc = 10−3 M⊙ yr−1

Teff < 104 K H− ∼ 105 M⊙ ϵ = 0.1 ∝ κLrad

Ṁacc × tlife ∼ 0.1-1 M⊙ yr−1 × 106 yr ∼ 105-106 M⊙ ∼ 106 yr
Lr, Mr, v, ρ, T, Lrad cth vesc
Mr,∗, Lr∗ , ρ∗, T∗, Lrad,∗
L∗ ∼ LEdd,es v∗ v → 0 v∗ = αvcT,∗ αv = 10−5 αv = 10−8, 10−3 v ≪ cT αv ≪ 1

tgrow = tSal ln

(
MBH

MBH,0

)
ϵ

1− ϵ
, tSal =

σTc

4πGmp
= 0.45 Gyr (18)

tgrow ∼ 0.5 Gyr < tz=7 ∼ 0.77 Gyr MBH ∼ 2 × 109 M⊙ MBH,0 ∼ 105 M⊙
tgrow ∼ 0.84 Gyr > tz=7 ∼ 0.77 Gyr MBH,0 ∼ 100 M⊙

3

この星モデルから定常的な星風 
は発生しないと考えられる.
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Figure 11: Wind 解の持つ速度, 密度, 温度構造の結果 (solid lines). Ṁacc =
1.0 M⊙ yr−1, M∗ = 104 M⊙ の場合. 接続点の選び方による構造の違いを
示した. purple, green, red, black lines はそれぞれ, 接続点の半径を rb =
16000, 15000, 14000, 13000 R⊙と設定した場合に対応する.

してしまう (Castor et al., 1975). しかしながら, 今は始原的な表面組成を持つ星の
進化を考えている. 始原的な組成の場合 line-driven windは弱いことがわかってい
る (Krtička & Kubát, 2006)ので, この効果はあまり重要にはならないと考えられる.
今回の結果には大きく影響しないだろう.
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+

GM∗
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= 0, (15)
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Figure 2: Wind解中における輻射圧勾配力 (red), ガス圧勾配力 (blue), 加速度項
(purple), 重力 (black)の大きさの変化の様子. 破線は値が負である (動径方向と逆向
き)ことを示す. M∗ = 100 M⊙, Tcr = 2.5 × 105 K, Rcr = 30 R⊙の場合. Upper and
lower panelsはそれぞれ ρcr = 5.87, 5.8× 10−9 g cm−3の場合に対応する.

Fig. 1より, ρcr = ρthの解は wind解の系列の中でも rphが最大となる場合に相
当することがわかる. 終端速度が rphにおける脱出速度を上回っているので, 定常恒
星風として適当な解であると考えられる. 質量放出率は Ṁw = 0.03 M⊙ yr−1と求め
られた. 他方 ρcr > ρthの解は今回考えたモデルの範疇では定常恒星風として適当な
解であるかどうかは言えない. それは r > rphにおける opacity sourceの有無に依存
し, opacity sourceがない場合には結局減速されて fallbackしてしまうだろう. 従っ
て, 今回考えたモデルの範囲内では, 以下が定常恒星風の満たすべき条件の一つであ
る: vt ≥ vesc(rph).

Tcrを固定したままM∗や rcrの値を振った時に wind解の構造がどう変化するか
も調べた. その結果 vtの値は, 固定された Tcrに対してM∗や rcrを変えてもほとんど
変わらないことがわかった. このことから各 Tcrに対して, 定常恒星風解が存在する
星の最大質量を導くことができる. まず subsonic regionでは静水圧平衡状態にある
ことから, そこでの輻射光度は Eddington光度以下でなければならない. また wind
解中で輻射光度はほぼ一定である. この二点より photosphereにおける輻射光度も
Eddington光度以下であると言える: Lph ! LEdd,es. 従って photospheric radiusには
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circleは sonic pointである. 接続点近辺においては十分に subsonicであるが (Mach
number < 0.1), rcr ∼ 3200 R⊙で sonic pointに達することがわかる. supersonicにま
で加速されるが, 3400 R⊙を過ぎたところで減速が始まり, 最終的には sound speed
近くまで減速されることがわかった.

middle panelにおいて実線はwind解, 破線はもとの星の密度構造を表す. 物質の
流れがある場合, もとの星に比して密度の低い構造を取ることがわかる. また, もと
の星の解では密度反転が見えていたが, subsonic regionではそのような構造も見られ
なくなる. このことは density scale height Hρの表式からも理解することができる:

Hρ ≡
∣∣∣∣

ρ

dρ/dr

∣∣∣∣ = 2

(
cT
vesc

)2 r

1−
[
1 +

(
∂Pgas

∂Prad

)

ρ

]
Γr + 2

(
v

vesc

)2
d ln v
d ln r

. (13)

この表式より, wind解の場合静水圧平衡解に比べてHρが小さくなるので, 密度の低
下が早く起こることがわかる. Fig. 3 lower panelにおいて実線はwind解, 破線はも
との星の温度構造を表す. 静水圧平衡な星の場合に比べて密度が小さい構造を取る
ので, 同じ輻射光度を達成するのに要する温度勾配の絶対値は小さくて済む. 従って
temperature scale height HT が大きくなり, よりゆっくりとした温度低下が見られる.

Fig. 4はwind解中における opacity κ (upper panel)とEddington ratio Γr (lower
panel)の変化の様子を示した図である. この図によれば subsonic regionでは全領域
において sub-Eddingtonであることがわかる. Sonic pointより少し外側で一時的に
super-Eddingtonとなるが, これは水素の photoionizationに起因した opacity bump
に遭遇するためである (upper panel). また! 3400 R⊙において再び sub-Eddington
に転じる. Fig. 3によれば∼ 3400 R⊙において温度が 104 Kを下回るが, " 104 Kで
は水素の再結合が進み opacityが急激に減衰するためである (upper panel).

Fig. 5は wind解中における輻射圧勾配力 (red), ガス圧勾配力 (blue), 加速度項
(purple), 重力 (black)の大きさの変化の様子を表す. 破線は値が負である (動径方向
と逆向き)ことを示す. ほとんど全領域を通して輻射圧勾配力がガス圧勾配力よりも
大きい. また subsonic regionでは全圧力勾配力と重力がほぼ釣り合っており, 静水圧
平衡がよい近似で成立していることがわかる. 一方 supersonic regionでは∼ 3400 R⊙
までは全圧力勾配力が重力を大きく上回るが, その後すぐに急激な減衰へと転じるこ
とが見て取れる. 輻射圧勾配力は∝ κLradのような依存性を持つために, opacityと
共に急激に減退してしまったと考えられる.

4.1.2 Dependence on the Matching Radius

次に, matching radius rbを様々に変化させた時に得られるwind解の性質について述
べる. Matching radiusによりwind解の構造は少しずつ異なることがわかった. Fig.
6に wind解の持つ速度, 密度, 温度構造の結果を, Fig. 7には wind解中における
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Figure 3: Wind 解の持つ速度, 密度, 温度構造の結果 (solid lines). Ṁacc =
0.1 M⊙ yr−1, M∗ = 100 M⊙の場合. upper panel: 速度構造. 実線は windの速度
v, 破線は isothermal sound speed cT, 点線は脱出速度にそれぞれ対応する. middle
panel: 密度構造. 実線はwind解,点線はもとの星の密度構造に対応する. lower panel:
温度構造. 実線はwind解,点線はもとの星の温度構造に対応する. open circleは sonic
pointである.

opacity κと Eddington ratio Γrの構造の結果を示す. purple, green, red, black lines
はそれぞれ, 接続点の半径を rb = 1800, 1700, 1600, 1500 R⊙と設定した場合に対応
する.
まず速度構造についてであるが (Fig. 6 upper panel), いずれの場合も接続点付近
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を持つことがわかる (Fig. 6 middle panel). 一方 sonic pointにおける温度はいずれの
場合もTcr ∼ 104 Kと大差ないことがわかる (Fig. 6 lower panel). Fig. 7 upper panel
からわかるように sonic pointは水素の photoionizationによる opacity bumpの手前
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Figure 6. Same as Figure 3, but for the wind solution matched
with the hydrostatic envelope: the radiation pressure gradi-
ent (red), gas pressure gradient (blue), acceleration term (green),
and gravity (black). Dashed parts of lines show that the force
is in the negative (inward) direction. The stellar parameters are
Ṁacc = 0.1 M⊙ yr−1 and M∗ = 100 M⊙. The matching point (filled
square) is located at rm = 1700 R⊙. The sonic point is indicated
by the filled circle.

radius, and that the stellar mass acquisition via accretion is
thus not prevented by the wind mass loss.

In the middle panel of Figure 7, we can see that, with
smaller matching radius rm, the outflowing envelope has
more extended structure with lower density at the sonic
point. On the other hand, the temperature at the sonic
point, which is located just inside the opacity peak (see Fig-
ure 8 upper), is ≃ 104 K for all the cases (Figure 7 lower)
because of very strong temperature-dependence of the opac-
ity around this value.

The maximum value of the local Eddington ratio Γr,max
is lower for the inner matching point case (Figure 8 lower).
This is because the density above the sonic point r > rs be-
comes lower for smaller rm, which results in the lower opac-
ity and thus the smaller Γr,max. In particular, Γr,max never
reaches unity for rm smaller than 1500 R⊙.

4.1.3 Dependence on the Stellar Mass

Next, we examine the stellar wind solutions for more massive
SGPSs with the same accretion rate Ṁacc = 0.1 M⊙ yr−1.
The wind solutions for the 1000 and 104 M⊙ stars are shown
in Figures 9 and 10, respectively. Both stellar models have
the extended envelopes with the radii R∗ ≃ 7000 R⊙ (1000
M⊙) and 18000 R⊙ (104 M⊙). The 95 % of the total stellar
mass is enclosed within 2000 R⊙ for the 1000 M⊙ model and
500 R⊙ for the 104 M⊙ model, respectively. The matching
radii are chosen at rm = 6000, 5500, 5000, and 4500 R⊙ for
1000 M⊙, and rm = 16000, 14000, 13000, and 12000 R⊙ for
104 M⊙, respectively.

All these solutions for the 1000 and 104 M⊙ stars are
again the stalled ones as in the case of the 100 M⊙ model:
the flow starts to decelerate after reaching the sonic point
without reaching the escape velocity. Note also that the
maximum velocity in the wind remains much below the es-
cape velocity vesc,∗ for more massive models since the es-
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Figure 4. The wind solution for Ṁacc = 0.1 M⊙ yr−1 and M∗ =
100 M⊙, with the matching point at rm = 1700 R⊙ (the filled
square). In the upper panel, the wind velocity (solid) is shown
along with the isothermal sound speed (dotted). The upper grey-
shaded region indicates the region where velocity exceeds the local
escape velocity. The middle and lower panels show the density and
temperature profiles, respectively. Also shown in these panels are
the profiles for the hydrostatic star (dashed).

prevent the stellar growth at this early stage, the star cannot
reach the supermassive regime M∗ ∼ 104-105 M⊙. We thus
study the case of M∗ = 100 M⊙, still in the early stage of the
SGPSs, before considering more massive regime in Section
4.1.3. Here, the matching point rm is taken outside 1300 R⊙,
which encompasses more than 95 % of the total stellar mass.

In Figure 4, we show the wind solution with the match-
ing point at rm = 1700 R⊙ (the filled square). The veloc-
ity, density and temperature profiles are presented in the
top, middle and bottom panels, respectively. The flow is ini-
tially subsonic with Mach number < 0.1 around the match-
ing point and then becomes supersonic at rs ≃ 2600 R⊙. The
flow, however, decelerates after taking the maximum veloc-
ity at ≃ 2700 R⊙, i.e., it is the stalled solution. The wind
solution (red solid) has more extended structure with lower
density than in the hydrostatic model (black dashed). Note
that, unlike the hydrostatic case having the density inversion
around r = 2000 R⊙, the wind solution does not have such
structure and the flow is just accelerated by the radiation
pressure.

Figure 5 shows the radial distributions of the Rosse-
land mean opacity κ (upper panel) and the local Edding-
ton ratio Γr (lower panel). The radiative luminosity remains
sub-Eddington, i.e., Γr < 1, throughout the subsonic re-
gion. Around the opacity bump at ≃ 2700 R⊙ due to the
bound-free absorption of H atoms and H− ions, a thin super-
Eddington layer appears just outside the sonic point. The
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Figure 5. Radial distributions of the Rosseland mean opacity
κ (upper) and the local Eddington ratio Γr (lower) for the wind
solution with Ṁacc = 0.1 M⊙ yr−1 and M∗ = 100 M⊙. The matching
point (filled square) is located at rm = 1700 R⊙. The sonic point
is indicated by the filled circle.

sharp drop of the opacity outside of it due to the hydro-
gen recombination below 104 K, however, pushes back the
Eddington ratio again below unity for r ! 2700 R⊙.

Figure 6 shows the force balance for this case. We see
that the radiation pressure (red) dominates the gas pres-
sure (blue) everywhere. Since the pressure gradient is almost
in balance with the gravity (black), hydrostatic equilibrium
still holds approximately in the subsonic region. The accel-
eration term (green) gradually increases outward and takes
the maximum in the supersonic region at r ≃ 2700 R⊙. How-
ever, the acceleration term then declines dramatically in the
outer region owing to the decrease of the radiation pressure
force, which is in proportion to the opacity κ.

4.1.2 Dependence on the Matching Radius

Next, we investigate how the wind structure changes with
varying matching radius rm. Figures 7 and 8 present the wind
solutions for different matching radii with the same M∗ =
100 M⊙ SGPS model. In each figure, the blue, green, red,
and black lines represent those with the different matching
radii of rm = 1800, 1700, 1600, and 1500 R⊙, respectively.

The upper panel of Figure 7 shows that the velocity
structure is qualitatively similar to each other even with
the different matching radii: the flow velocity increases and
becomes supersonic at some point, but start decreasing be-
fore exceeding the escape velocity owing to the sharp de-
crease of opacity and radiation force due to recombination
of hydrogen (upper panel of Figure 8), as mentioned in Sec-
tion 4.1.1. With the smaller rm, the flows have the mass-loss
rates Ṁwind = 1.2, 0.83, 0.55, 0.42 M⊙ yr−1, which could have
a great impact on the stellar growth if the wind is success-
fully launched. All of them, however, belong to the stalled
wind solutions, which implies that the steady wind is not
launched from this stellar model regardless of the matching
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Figure 3. Force balance in the wind region: the radiation pres-
sure gradient (red), gas pressure gradient (blue), acceleration
term (green), and gravity (black). Shown is the case for M∗ =
100 M⊙, Ts = 2.5×105 K, and rs = 50 R⊙. Depending on the density
at the sonic point ρs, the type of the wind solution changes: (up-
per; ever-accelerating solution) the case of ρs = 9.71×10−9 g cm−3,
(lower; stalled solution) ρs = 9.65×10−9 g cm−3. Dashed lines show
that the force is in the negative (inward) direction.

at ∼ 300 R⊙, so that the wind decelerates monotonically
beyond this point. On the other hand, in the ever acceler-
ating solution (Figure 3 upper), the acceleration continues
until ! 1000 R⊙ and reaches the velocity ∼ 200 km s−1 at
the photosphere, exceeding the escape velocity. In this case,
the wind is successfully launched with the mass-loss rate of
Ṁwind ∼ 0.14 M⊙ yr−1.

It should be noted, however, that not all the ever-
accelerating solutions can be regarded as “successful”winds.
For example, for ρs = 9.85 and 10.5 × 10−9 g cm−3, although
being continuously accelerated, the solution reaches the pho-
tosphere before the velocity exceeds the escape value. Out-
side the photosphere, the further acceleration is improbable
for the gas with the primordial composition (see the discus-
sion), and the matter in the wind would eventually fall back
to the star. Hence, the failure of some ever-accelerating solu-
tions to launch the wind comes from the limited acceleration
regime due to the small photospheric radii.

The successful wind solution has the most extended
photosphere among the ever-accelerating solutions. The
maximum value for the photospheric radius can be estimated
from the argument that the luminosity does not exceed the
classical Eddington limit LEdd,es and the effective temper-
ature does not fall below Teff ∼ 5000 K due to the sharp
opacity cutoff at lower temperatures:

rph = (Lph/4πσSBT4
eff )1/2 (11)

" (LEdd,es/4πσSBT4
eff )1/2

" rph,max ≡ 2160 R⊙ (M∗/100 M⊙)1/2 (Teff/5000 K)−2.

This value is consistent with our numerical result for ρs =
9.71 × 10−9 g cm−3 with rph ∼ 1400 R⊙ (red line, Figure 2
middle).

We find that there is an upper limit on the stellar mass

for the successful wind solutions to be found. In these so-
lutions, the velocity at the photosphere vph must be larger
than the escape velocity there:

vph ≥ vesc(rph). (12)

From experiments, we found that the velocity at the photo-
sphere vph is almost solely determined by Ts (vph ∼ 200 km s−1

for our choice of Ts = 2.5 × 105 K here) and increases with
Ts. Since they correspond to the solutions of the maximum
photospheric radius, by substituting Eq. (11) into Eq. (12),
we obtain the upper limit on the mass of a star that can
successfully launch the wind for a given Ts, i.e., vph:

M∗ ≃ 200 M⊙ (vph/200 km s−1)4 (Teff/5000 K)−4. (13)

For example, for Ts = 2.5 × 105 K (vph ∼ 200 km s−1), the
successful wind solutions exist only up to M∗ ≃ 200 M⊙.

4 WIND SOLUTIONS CONNECTED WITH
THE HYDROSTATIC STARS

In this section, we see whether SGPSs have the wind solu-
tions with the terminal velocity exceeding the escape value.
We construct the solutions as described in Section 2.2, i.e.,
by connecting the outer wind and inner hydrostatic solutions
at the matching point. As for the hydrostatic solutions, we
adopt our previous results of Hosokawa et al. (2013), who
followed the protostellar evolution until the stellar mass
reaches 104-105 M⊙ at the constant accretion rates in the
range Ṁacc = 0.1-1.0 M⊙ yr−1. They showed that such proto-
stars, whose structures are calculated under the assumption
of hydrostatic equilibrium, have very extended envelopes.
Below, we show that an outer part of the envelope can also
take the outflowing structure, where the gas is not in the
hydrostatic balance.

We first see the wind solutions for SGPSs accreting at
Ṁacc = 0.1 M⊙ yr−1 in Section 4.1 and then the cases with
the higher accretion rate Ṁacc = 1.0 M⊙ yr−1 in Section 4.2.
In the former case, the stellar models are available only up
to the mass reaches M∗ ∼ 104 M⊙, while in the latter case,
up to M∗ ∼ 105 M⊙. Hence, for SGPSs more massive than
∼ 104 M⊙, wind solutions can be examined only in the latter
case.

4.1 Cases with Ṁacc = 0.1 M⊙ yr−1

4.1.1 M∗ = 100 M⊙ SGPS

Hosokawa et al. (2013) showed that, at this accretion rate,
by the time the stellar mass reaches 100 M⊙ the protostar al-
ready has the extended envelope of R∗ ≃ 2000 R⊙, character-
istic to the SGPSs. If the mass loss is vigorous enough to pre-
vent the stellar growth at this early stage of the SGPSs, the
star cannot reach the supermassive regime M∗ ∼ 104-105 M⊙.
We thus study the case of M∗ = 100 M⊙, before considering
the more massive regime in Section 4.1.3. Here, the match-
ing point rm is taken outside 1300 R⊙, which encompasses
more than 95 % of the total mass.

In Figure 4, we show the wind solution with the match-
ing point at rm = 1700 R⊙ (the filled square). The velocity,
density and temperature profiles are presented in the top,
middle and bottom panels, respectively. The flow is initially
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そこでは水素の再結合により opacityが急激に減衰するので (Fig. 7 upper panel), そ
れに伴い輻射圧勾配力も急激に減衰してしまったことが原因である. 結局この星のモ
デルでは, 脱出速度にまで達するような定常的な windは発生しえず, 原始星の質量
獲得が妨げられることはないと考えられる.
また Fig. 6からは, 星とwindの接続点の取り方によりwindの構造が少しずつ異

なってくることがわかる. 具体的には接続点の位置を内側に取った場合ほど, sonic
point rcrが外側に位置しなおかつ密度 ρcrが小さくなるような, looseに広がった構造
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Figure 6. Same as Figure 3, but for the wind solution matched
with the hydrostatic envelope: the radiation pressure gradi-
ent (red), gas pressure gradient (blue), acceleration term (green),
and gravity (black). Dashed parts of lines show that the force
is in the negative (inward) direction. The stellar parameters are
Ṁacc = 0.1 M⊙ yr−1 and M∗ = 100 M⊙. The matching point (filled
square) is located at rm = 1700 R⊙. The sonic point is indicated
by the filled circle.

radius, and that the stellar mass acquisition via accretion is
thus not prevented by the wind mass loss.

In the middle panel of Figure 7, we can see that, with
smaller matching radius rm, the outflowing envelope has
more extended structure with lower density at the sonic
point. On the other hand, the temperature at the sonic
point, which is located just inside the opacity peak (see Fig-
ure 8 upper), is ≃ 104 K for all the cases (Figure 7 lower)
because of very strong temperature-dependence of the opac-
ity around this value.

The maximum value of the local Eddington ratio Γr,max
is lower for the inner matching point case (Figure 8 lower).
This is because the density above the sonic point r > rs be-
comes lower for smaller rm, which results in the lower opac-
ity and thus the smaller Γr,max. In particular, Γr,max never
reaches unity for rm smaller than 1500 R⊙.

4.1.3 Dependence on the Stellar Mass

Next, we examine the stellar wind solutions for more massive
SGPSs with the same accretion rate Ṁacc = 0.1 M⊙ yr−1.
The wind solutions for the 1000 and 104 M⊙ stars are shown
in Figures 9 and 10, respectively. Both stellar models have
the extended envelopes with the radii R∗ ≃ 7000 R⊙ (1000
M⊙) and 18000 R⊙ (104 M⊙). The 95 % of the total stellar
mass is enclosed within 2000 R⊙ for the 1000 M⊙ model and
500 R⊙ for the 104 M⊙ model, respectively. The matching
radii are chosen at rm = 6000, 5500, 5000, and 4500 R⊙ for
1000 M⊙, and rm = 16000, 14000, 13000, and 12000 R⊙ for
104 M⊙, respectively.

All these solutions for the 1000 and 104 M⊙ stars are
again the stalled ones as in the case of the 100 M⊙ model:
the flow starts to decelerate after reaching the sonic point
without reaching the escape velocity. Note also that the
maximum velocity in the wind remains much below the es-
cape velocity vesc,∗ for more massive models since the es-
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cape velocity increases with the stellar mass as vesc,∗ ∝ M1/4
∗

from the relation R∗ ∝ M1/2
∗ for the SGPSs (Hosokawa et al.

2012). Whereas the mass-loss rates are mathematically de-
termined as Ṁwind = 2.3, 1.4, 0.92, 0.54 M⊙ yr−1 (Ṁwind =
3.1, 2.1, 1.3, 0.73 M⊙ yr−1) for the 1000 M⊙ (104 M⊙) models,
such steady winds can not be launched from these stars and
prevent the mass growth.

For the flow to be accelerated to the supersonic regime,
the matching point must be located outside a certain ra-
dius, which is rm,min ≃ 4500 R⊙ (12000 R⊙) for the M∗ =
1000 M⊙ (104 M⊙) case. As seen in Figures 9 and 10, the
velocity gradient at the sonic point becomes smaller for
the smaller matching radius and it eventually becomes even
negative for the matching radius below the threshold value
rm,min and thus the flow cannot reach the supersonic regime.
For this reason, we here consider only the matching points
outside this threshold rm > rm,min.

Hence, with the accretion rate of Ṁacc = 0.1 M⊙ yr−1,
the mass loss by stellar winds does not prevent SGPSs from
growing up at least to 104 M⊙. Without more massive SGPS
models, we can not examine the effect of stellar winds on the
SGPS evolution for M∗ ≥ 104 M⊙. We expect, however, that
a SGPS reaches the supermassive regime, since successful
wind solutions exist only for M∗ ! 200 M⊙, according to the
analytical estimate in Section 3 (Eq. 13).

4.2 Cases with Ṁacc = 1.0 M⊙ yr−1

Here, we consider the cases with the higher accretion
rate of Ṁacc = 1.0 M⊙ yr−1. In this case, the proto-
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Figure 6. Same as Figure 3, but for the wind solution matched
with the hydrostatic envelope: the radiation pressure gradi-
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and gravity (black). Dashed parts of lines show that the force
is in the negative (inward) direction. The stellar parameters are
Ṁacc = 0.1 M⊙ yr−1 and M∗ = 100 M⊙. The matching point (filled
square) is located at rm = 1700 R⊙. The sonic point is indicated
by the filled circle.

radius, and that the stellar mass acquisition via accretion is
thus not prevented by the wind mass loss.

In the middle panel of Figure 7, we can see that, with
smaller matching radius rm, the outflowing envelope has
more extended structure with lower density at the sonic
point. On the other hand, the temperature at the sonic
point, which is located just inside the opacity peak (see Fig-
ure 8 upper), is ≃ 104 K for all the cases (Figure 7 lower)
because of very strong temperature-dependence of the opac-
ity around this value.

The maximum value of the local Eddington ratio Γr,max
is lower for the inner matching point case (Figure 8 lower).
This is because the density above the sonic point r > rs be-
comes lower for smaller rm, which results in the lower opac-
ity and thus the smaller Γr,max. In particular, Γr,max never
reaches unity for rm smaller than 1500 R⊙.

4.1.3 Dependence on the Stellar Mass

Next, we examine the stellar wind solutions for more massive
SGPSs with the same accretion rate Ṁacc = 0.1 M⊙ yr−1.
The wind solutions for the 1000 and 104 M⊙ stars are shown
in Figures 9 and 10, respectively. Both stellar models have
the extended envelopes with the radii R∗ ≃ 7000 R⊙ (1000
M⊙) and 18000 R⊙ (104 M⊙). The 95 % of the total stellar
mass is enclosed within 2000 R⊙ for the 1000 M⊙ model and
500 R⊙ for the 104 M⊙ model, respectively. The matching
radii are chosen at rm = 6000, 5500, 5000, and 4500 R⊙ for
1000 M⊙, and rm = 16000, 14000, 13000, and 12000 R⊙ for
104 M⊙, respectively.

All these solutions for the 1000 and 104 M⊙ stars are
again the stalled ones as in the case of the 100 M⊙ model:
the flow starts to decelerate after reaching the sonic point
without reaching the escape velocity. Note also that the
maximum velocity in the wind remains much below the es-
cape velocity vesc,∗ for more massive models since the es-
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WN models, we suppose that Z̃ is identical with the metal-
licity Z in solar composition (Grevesse & Noels 1993), while
in WC models, the mass fractions of C and O are enhanced
by dXC = 0.4 and dXO = 0.1, i.e., Z̃ = Z + dXC + dXO. In each
model, we consider three different metallicities of Z = 1, 2,
and 4 Z⊙ with Z⊙ = 0.02 the solar metallicity.

Wind Clumping

According to the detailed modeling of WR atmo-
sphere with radiation hydrodynamics, wind clumping
is considered to be indispensable for reproducing the
SED (Hamann & Koesterke 1998). We include this effect
by mimicking the functional form used in Hillier & Miller
(1999). The clump is optically thin and its volume filling
factor fV is

fV(r) = D−1 + (1 − D−1) exp
(
− v(r) − vcl

vcl

)
, v(r) ≥ vcl. (17)

where D is the clumping factor and we fix vcl = 200 km s−1 in
this paper (Hillier & Miller 1999). At v(r) ≥ vcl, the opacity
is modified as κ(ρ,T ) → κ(ρ/ fV,T ) (Gräfener et al. 2012).

We also consider the case of vcl = 1.1v(rs) ≃ v(rs). In this
case, wind clumping and the opacity enhancement become
effective in the entire supersonic region.

T (105 K)

Teff = T (rph) τ(rph) = 3 vcl ≃ v(rs) D = 100 ρcl = fclρ (18)

dLr

dr
= 4πr2ρϵnuc, (19)

Ṁw,NL ∝ L1.29
∗ Y1.7Z0.5 (20)

3 RESULTS

3.1 WN Models without Wind Clumping

First, we show the stellar structure of a WN model with
M∗ = 48 M⊙, Z = 1 Z⊙, and D = 1 (Figure 1). In this model,
the matching point and the sonic point (filled circle) are lo-
cated at rm ≃ 1 R⊙ and rs ≃ 2.5 R⊙, respectively. While the
wind velocity is sufficiently subsonic (v ! 1 cm s−1) around
the matching radius, it is steeply accelerated to a supersonic
speed at the sonic radius (panel a). It finally reaches a con-
stant speed of v∞ ∼ 8 × 107 cm s−1, which is smaller than
the observed wind velocity of WN stars by a factor of a
few (Hamann et al. 2006). In our formulation, the mass-loss
rate is determined uniquely as an eigenvalue of the equa-
tions. In this model, we find Ṁw ≃ 10−4 M⊙ yr−1, which
corresponds to the high end of the observed mass-loss rates.

The density and temperature profiles show rapid decline
around rs (panels b and c). In the supersonic region, density
decreases inversely proportional to the square of radius, ρ ∝
r−2, since the wind velocity is almost constant there. We find
that the radiation pressure dominates the gas pressure over
the supersonic region, while they are almost the same order
of magnitude in the hydrostatic core and subsonic wind.

The luminosity is almost constant (Lph ≃ 1.7 × 106 L⊙)
throughout the wind envelope (panel d). According to the
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Figure 1. Stellar structures of a WN model with M∗ = 48 M⊙,
Z = 1 Z⊙, and D = 1. In each panel, the filled circle shows the
location of the sonic point. Panel a): The velocity structure of
the wind. The purple line shows the wind velocity, the green
line isothermal sound speed, and the grey-shaded region where
v(r ) ≥ vesc (r ) holds. Panel b): The density profile. Panel c): The
temperature profile. Panel d): The luminosity structure. The pur-
ple line shows the total luminosity and the green one the local
Eddington luminosity.
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mass-luminosity relation obtained from the hydrostatic W-R
models (Langer 1989; Schaerer & Maeder 1992):

log
(

L∗
L⊙

)
= 3.03 + 2.70 log

(
M∗
M⊙

)
− 0.46

(
log

(
M∗
M⊙

))2
, (21)

the stellar luminosity is evaluated as L∗ ≃ 1.85×106 L⊙ with
M∗ = 48 M⊙, which is consistent with our result.

For wind acceleration, the presence of the super-
Eddington layer becomes a key. While the luminosity is
sub-Eddington in the subsonic region, it turns into super-
Eddington beyond the sonic point. At r ∼ 4 R⊙, however, it
returns to sub-Eddington again. Around this point, the wind
acceleration stops and the wind velocity begins to decrease
gradually. The super-Eddington layer is induced by the iron
opacity bump at T ≃ 2 × 105 K, which can be confirmed
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* ここでは星風の駆動機構を 
  特定しない. 
* 接続半径を第一原理的に 
  決めることはできない. 
* 接続半径の選びかたは 
  任意とする.
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Figure 9. Same as Figure 7, but for the stellar model with Ṁacc =
0.1 M⊙ yr−1 and M∗ = 1000 M⊙. In each panel, the blue, green, red,
and black lines correspond to the results for rm = 6000, 5500, 5000,
and 4500 R⊙, respectively.
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Figure 11. Same as Figure 7, but for the stellar model with
Ṁacc = 1.0 M⊙ yr−1 and M∗ = 1000 M⊙. In each panel, the blue,
green, red, and black lines correspond to the results with rm =
6000, 5500, 5000, and 4500 R⊙, respectively.

cape velocity increases with the stellar mass as vesc,∗ ∝ M1/4
∗

from the relation R∗ ∝ M1/2
∗ for the SGPSs (Hosokawa et al.

2012). Whereas the mass-loss rates are mathematically de-
termined as Ṁwind = 2.3, 1.4, 0.92, 0.54 M⊙ yr−1 (Ṁwind =
3.1, 2.1, 1.3, 0.73 M⊙ yr−1) for the 1000 M⊙ (104 M⊙) models,
such steady winds can not be launched from these stars and
prevent the mass growth.

For the flow to be accelerated to the supersonic regime,
the matching point must be located outside a certain ra-
dius, which is rm,min ≃ 4500 R⊙ (12000 R⊙) for the M∗ =
1000 M⊙ (104 M⊙) case. As seen in Figures 9 and 10, the
velocity gradient at the sonic point becomes smaller for
the smaller matching radius and it eventually becomes even
negative for the matching radius below the threshold value
rm,min and thus the flow cannot reach the supersonic regime.
For this reason, we here consider only the matching points
outside this threshold rm > rm,min.

Hence, with the accretion rate of Ṁacc = 0.1 M⊙ yr−1,
the mass loss by stellar winds does not prevent SGPSs from
growing up at least to 104 M⊙. Without more massive SGPS
models, we can not examine the effect of stellar winds on the
SGPS evolution for M∗ ≥ 104 M⊙. We expect, however, that
a SGPS reaches the supermassive regime, since successful
wind solutions exist only for M∗ ! 200 M⊙, according to the
analytical estimate in Section 3 (Eq. 13).

4.2 Cases with Ṁacc = 1.0 M⊙ yr−1

Here, we consider the cases with the higher accretion
rate of Ṁacc = 1.0 M⊙ yr−1. In this case, the proto-
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opacity κと Eddington ratio Γrの構造の結果を示す. purple, green, red, black lines
はそれぞれ, 接続点の半径を rb = 1800, 1700, 1600, 1500 R⊙と設定した場合に対応
する.
まず速度構造についてであるが (Fig. 6 upper panel), いずれの場合も接続点付近

では十分に subsonicであるものの,圧力勾配力による加速のため sonic pointを通過し
て超音速まで達する. しかし sonic pointを通過後しばらくすると減速を始め, 最終的
には再び sound speedまで減速してしまう. これは先にも述べたように, sonic point
を通過した後しばらくすると温度が 10000 Kを下回ってしまい (Fig. 6 lower panel),
そこでは水素の再結合により opacityが急激に減衰するので (Fig. 7 upper panel), そ
れに伴い輻射圧勾配力も急激に減衰してしまったことが原因である. 結局この星のモ
デルでは, 脱出速度にまで達するような定常的な windは発生しえず, 原始星の質量
獲得が妨げられることはないと考えられる.
また Fig. 6からは, 星とwindの接続点の取り方によりwindの構造が少しずつ異

なってくることがわかる. 具体的には接続点の位置を内側に取った場合ほど, sonic
point rcrが外側に位置しなおかつ密度 ρcrが小さくなるような, looseに広がった構造

10

8 D. Nakauchi et al.

104

105

 4  6  8  10  12  14  16  18

T 
(K

)

r (1000 Rsun)

105

106

107

v 
(c

m
 s

-1
) 

v
cT

-12

-11

-10

-9

lo
g 
ρ 

(g
 c

m
-3

)

wind
static

Figure 9. Same as Figure 7, but for the stellar model with Ṁacc =
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cape velocity increases with the stellar mass as vesc,∗ ∝ M1/4
∗

from the relation R∗ ∝ M1/2
∗ for the SGPSs (Hosokawa et al.

2012). Whereas the mass-loss rates are mathematically de-
termined as Ṁwind = 2.3, 1.4, 0.92, 0.54 M⊙ yr−1 (Ṁwind =
3.1, 2.1, 1.3, 0.73 M⊙ yr−1) for the 1000 M⊙ (104 M⊙) models,
such steady winds can not be launched from these stars and
prevent the mass growth.

For the flow to be accelerated to the supersonic regime,
the matching point must be located outside a certain ra-
dius, which is rm,min ≃ 4500 R⊙ (12000 R⊙) for the M∗ =
1000 M⊙ (104 M⊙) case. As seen in Figures 9 and 10, the
velocity gradient at the sonic point becomes smaller for
the smaller matching radius and it eventually becomes even
negative for the matching radius below the threshold value
rm,min and thus the flow cannot reach the supersonic regime.
For this reason, we here consider only the matching points
outside this threshold rm > rm,min.

Hence, with the accretion rate of Ṁacc = 0.1 M⊙ yr−1,
the mass loss by stellar winds does not prevent SGPSs from
growing up at least to 104 M⊙. Without more massive SGPS
models, we can not examine the effect of stellar winds on the
SGPS evolution for M∗ ≥ 104 M⊙. We expect, however, that
a SGPS reaches the supermassive regime, since successful
wind solutions exist only for M∗ ! 200 M⊙, according to the
analytical estimate in Section 3 (Eq. 13).

4.2 Cases with Ṁacc = 1.0 M⊙ yr−1

Here, we consider the cases with the higher accretion
rate of Ṁacc = 1.0 M⊙ yr−1. In this case, the proto-
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cape velocity increases with the stellar mass as vesc,∗ ∝ M1/4
∗

from the relation R∗ ∝ M1/2
∗ for the SGPSs (Hosokawa et al.

2012). Whereas the mass-loss rates are mathematically de-
termined as Ṁwind = 2.3, 1.4, 0.92, 0.54 M⊙ yr−1 (Ṁwind =
3.1, 2.1, 1.3, 0.73 M⊙ yr−1) for the 1000 M⊙ (104 M⊙) models,
such steady winds can not be launched from these stars and
prevent the mass growth.

For the flow to be accelerated to the supersonic regime,
the matching point must be located outside a certain ra-
dius, which is rm,min ≃ 4500 R⊙ (12000 R⊙) for the M∗ =
1000 M⊙ (104 M⊙) case. As seen in Figures 9 and 10, the
velocity gradient at the sonic point becomes smaller for
the smaller matching radius and it eventually becomes even
negative for the matching radius below the threshold value
rm,min and thus the flow cannot reach the supersonic regime.
For this reason, we here consider only the matching points
outside this threshold rm > rm,min.

Hence, with the accretion rate of Ṁacc = 0.1 M⊙ yr−1,
the mass loss by stellar winds does not prevent SGPSs from
growing up at least to 104 M⊙. Without more massive SGPS
models, we can not examine the effect of stellar winds on the
SGPS evolution for M∗ ≥ 104 M⊙. We expect, however, that
a SGPS reaches the supermassive regime, since successful
wind solutions exist only for M∗ ! 200 M⊙, according to the
analytical estimate in Section 3 (Eq. 13).

4.2 Cases with Ṁacc = 1.0 M⊙ yr−1

Here, we consider the cases with the higher accretion
rate of Ṁacc = 1.0 M⊙ yr−1. In this case, the proto-
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ative below the threshold value rm,min. In this case, the flow
cannot reach the supersonic regime, so that we here consider
only the case of rm > rm,min.

Hence, with the accretion rate of Ṁacc = 0.1 M⊙ yr−1,
the mass loss by stellar winds does not prevent SGPSs from
growing up at least to 104 M⊙. Without more massive SGPS
models, we can not examine the effect of stellar winds on the
SGPS evolution for M∗ ≥ 104 M⊙. We expect, however, that
a SGPS reaches the supermassive regime, since successful
wind solutions exist only for M∗ ! 200 M⊙, according to the
analytical estimate in Section 3 (Eq. 13).

4.2 Cases with Ṁacc = 1.0 M⊙ yr−1

Here, we consider the cases with the higher accretion
rate of Ṁacc = 1.0 M⊙ yr−1. In this case, the proto-
star becomes a SGPS when the stellar mass exceeds "
100 M⊙ (Hosokawa et al. 2013). Below, we show the re-
sults for the SGPS models with three different masses M∗ =
1000, 104, and 105 M⊙.

Figures 11 and 12 show the velocity, density, and
temperature profiles of the wind solutions for the M∗ =
1000 M⊙ and 104 M⊙ models, respectively. They have the
extended envelopes with the radii R∗ ≃ 6500 R⊙ (1000 M⊙)
and 18000 R⊙ (104 M⊙), and ∼ 95 % of the total stel-
lar mass is encompassed within 3500 R⊙ (1000 M⊙) and
4000 R⊙ (104 M⊙), respectively. The matching radii are cho-
sen at four different radii: rm = 6000, 5500, 5000, and 4500 R⊙
for 1000 M⊙ and rm = 16000, 15000, 14000, and 13000 R⊙ for
104 M⊙, respectively. If we take the matching radii below
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ative below the threshold value rm,min. In this case, the flow
cannot reach the supersonic regime, so that we here consider
only the case of rm > rm,min.

Hence, with the accretion rate of Ṁacc = 0.1 M⊙ yr−1,
the mass loss by stellar winds does not prevent SGPSs from
growing up at least to 104 M⊙. Without more massive SGPS
models, we can not examine the effect of stellar winds on the
SGPS evolution for M∗ ≥ 104 M⊙. We expect, however, that
a SGPS reaches the supermassive regime, since successful
wind solutions exist only for M∗ ! 200 M⊙, according to the
analytical estimate in Section 3 (Eq. 13).

4.2 Cases with Ṁacc = 1.0 M⊙ yr−1

Here, we consider the cases with the higher accretion
rate of Ṁacc = 1.0 M⊙ yr−1. In this case, the proto-
star becomes a SGPS when the stellar mass exceeds "
100 M⊙ (Hosokawa et al. 2013). Below, we show the re-
sults for the SGPS models with three different masses M∗ =
1000, 104, and 105 M⊙.

Figures 11 and 12 show the velocity, density, and
temperature profiles of the wind solutions for the M∗ =
1000 M⊙ and 104 M⊙ models, respectively. They have the
extended envelopes with the radii R∗ ≃ 6500 R⊙ (1000 M⊙)
and 18000 R⊙ (104 M⊙), and ∼ 95 % of the total stel-
lar mass is encompassed within 3500 R⊙ (1000 M⊙) and
4000 R⊙ (104 M⊙), respectively. The matching radii are cho-
sen at four different radii: rm = 6000, 5500, 5000, and 4500 R⊙
for 1000 M⊙ and rm = 16000, 15000, 14000, and 13000 R⊙ for
104 M⊙, respectively. If we take the matching radii below
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ative below the threshold value rm,min. In this case, the flow
cannot reach the supersonic regime, so that we here consider
only the case of rm > rm,min.

Hence, with the accretion rate of Ṁacc = 0.1 M⊙ yr−1,
the mass loss by stellar winds does not prevent SGPSs from
growing up at least to 104 M⊙. Without more massive SGPS
models, we can not examine the effect of stellar winds on the
SGPS evolution for M∗ ≥ 104 M⊙. We expect, however, that
a SGPS reaches the supermassive regime, since successful
wind solutions exist only for M∗ ! 200 M⊙, according to the
analytical estimate in Section 3 (Eq. 13).

4.2 Cases with Ṁacc = 1.0 M⊙ yr−1

Here, we consider the cases with the higher accretion
rate of Ṁacc = 1.0 M⊙ yr−1. In this case, the proto-
star becomes a SGPS when the stellar mass exceeds "
100 M⊙ (Hosokawa et al. 2013). Below, we show the re-
sults for the SGPS models with three different masses M∗ =
1000, 104, and 105 M⊙.

Figures 11 and 12 show the velocity, density, and
temperature profiles of the wind solutions for the M∗ =
1000 M⊙ and 104 M⊙ models, respectively. They have the
extended envelopes with the radii R∗ ≃ 6500 R⊙ (1000 M⊙)
and 18000 R⊙ (104 M⊙), and ∼ 95 % of the total stel-
lar mass is encompassed within 3500 R⊙ (1000 M⊙) and
4000 R⊙ (104 M⊙), respectively. The matching radii are cho-
sen at four different radii: rm = 6000, 5500, 5000, and 4500 R⊙
for 1000 M⊙ and rm = 16000, 15000, 14000, and 13000 R⊙ for
104 M⊙, respectively. If we take the matching radii below
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ative below the threshold value rm,min. In this case, the flow
cannot reach the supersonic regime, so that we here consider
only the case of rm > rm,min.

Hence, with the accretion rate of Ṁacc = 0.1 M⊙ yr−1,
the mass loss by stellar winds does not prevent SGPSs from
growing up at least to 104 M⊙. Without more massive SGPS
models, we can not examine the effect of stellar winds on the
SGPS evolution for M∗ ≥ 104 M⊙. We expect, however, that
a SGPS reaches the supermassive regime, since successful
wind solutions exist only for M∗ ! 200 M⊙, according to the
analytical estimate in Section 3 (Eq. 13).

4.2 Cases with Ṁacc = 1.0 M⊙ yr−1

Here, we consider the cases with the higher accretion
rate of Ṁacc = 1.0 M⊙ yr−1. In this case, the proto-
star becomes a SGPS when the stellar mass exceeds "
100 M⊙ (Hosokawa et al. 2013). Below, we show the re-
sults for the SGPS models with three different masses M∗ =
1000, 104, and 105 M⊙.

Figures 11 and 12 show the velocity, density, and
temperature profiles of the wind solutions for the M∗ =
1000 M⊙ and 104 M⊙ models, respectively. They have the
extended envelopes with the radii R∗ ≃ 6500 R⊙ (1000 M⊙)
and 18000 R⊙ (104 M⊙), and ∼ 95 % of the total stel-
lar mass is encompassed within 3500 R⊙ (1000 M⊙) and
4000 R⊙ (104 M⊙), respectively. The matching radii are cho-
sen at four different radii: rm = 6000, 5500, 5000, and 4500 R⊙
for 1000 M⊙ and rm = 16000, 15000, 14000, and 13000 R⊙ for
104 M⊙, respectively. If we take the matching radii below
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ative below the threshold value rm,min. In this case, the flow
cannot reach the supersonic regime, so that we here consider
only the case of rm > rm,min.

Hence, with the accretion rate of Ṁacc = 0.1 M⊙ yr−1,
the mass loss by stellar winds does not prevent SGPSs from
growing up at least to 104 M⊙. Without more massive SGPS
models, we can not examine the effect of stellar winds on the
SGPS evolution for M∗ ≥ 104 M⊙. We expect, however, that
a SGPS reaches the supermassive regime, since successful
wind solutions exist only for M∗ ! 200 M⊙, according to the
analytical estimate in Section 3 (Eq. 13).

4.2 Cases with Ṁacc = 1.0 M⊙ yr−1

Here, we consider the cases with the higher accretion
rate of Ṁacc = 1.0 M⊙ yr−1. In this case, the proto-
star becomes a SGPS when the stellar mass exceeds "
100 M⊙ (Hosokawa et al. 2013). Below, we show the re-
sults for the SGPS models with three different masses M∗ =
1000, 104, and 105 M⊙.

Figures 11 and 12 show the velocity, density, and
temperature profiles of the wind solutions for the M∗ =
1000 M⊙ and 104 M⊙ models, respectively. They have the
extended envelopes with the radii R∗ ≃ 6500 R⊙ (1000 M⊙)
and 18000 R⊙ (104 M⊙), and ∼ 95 % of the total stel-
lar mass is encompassed within 3500 R⊙ (1000 M⊙) and
4000 R⊙ (104 M⊙), respectively. The matching radii are cho-
sen at four different radii: rm = 6000, 5500, 5000, and 4500 R⊙
for 1000 M⊙ and rm = 16000, 15000, 14000, and 13000 R⊙ for
104 M⊙, respectively. If we take the matching radii below
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ative below the threshold value rm,min. In this case, the flow
cannot reach the supersonic regime, so that we here consider
only the case of rm > rm,min.

Hence, with the accretion rate of Ṁacc = 0.1 M⊙ yr−1,
the mass loss by stellar winds does not prevent SGPSs from
growing up at least to 104 M⊙. Without more massive SGPS
models, we can not examine the effect of stellar winds on the
SGPS evolution for M∗ ≥ 104 M⊙. We expect, however, that
a SGPS reaches the supermassive regime, since successful
wind solutions exist only for M∗ ! 200 M⊙, according to the
analytical estimate in Section 3 (Eq. 13).

4.2 Cases with Ṁacc = 1.0 M⊙ yr−1

Here, we consider the cases with the higher accretion
rate of Ṁacc = 1.0 M⊙ yr−1. In this case, the proto-
star becomes a SGPS when the stellar mass exceeds "
100 M⊙ (Hosokawa et al. 2013). Below, we show the re-
sults for the SGPS models with three different masses M∗ =
1000, 104, and 105 M⊙.

Figures 11 and 12 show the velocity, density, and
temperature profiles of the wind solutions for the M∗ =
1000 M⊙ and 104 M⊙ models, respectively. They have the
extended envelopes with the radii R∗ ≃ 6500 R⊙ (1000 M⊙)
and 18000 R⊙ (104 M⊙), and ∼ 95 % of the total stel-
lar mass is encompassed within 3500 R⊙ (1000 M⊙) and
4000 R⊙ (104 M⊙), respectively. The matching radii are cho-
sen at four different radii: rm = 6000, 5500, 5000, and 4500 R⊙
for 1000 M⊙ and rm = 16000, 15000, 14000, and 13000 R⊙ for
104 M⊙, respectively. If we take the matching radii below
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Hence, with the accretion rate of Ṁacc = 0.1 M⊙ yr−1,
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a SGPS reaches the supermassive regime, since successful
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star becomes a SGPS when the stellar mass exceeds "
100 M⊙ (Hosokawa et al. 2013). Below, we show the re-
sults for the SGPS models with three different masses M∗ =
1000, 104, and 105 M⊙.

Figures 11 and 12 show the velocity, density, and
temperature profiles of the wind solutions for the M∗ =
1000 M⊙ and 104 M⊙ models, respectively. They have the
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2010). Theoretically, radiative feedback from the BH will
make the growth time longer, so that the situation becomes
even worse (e.g., Alvarez et al. 2009; Milosavljević et al.
2009), although the super-Eddington accretion, if it oc-
curred, may help shorten the growth time enormously (e.g.,
Volonteri & Rees 2005; Alexander & Natarajan 2014).

The so-called direct collapse scenario is an alternative
pathway. In this framework, we suppose that a supermas-
sive star (SMS) of ∼ 105 M⊙ forms and collapses directly
to a BH with almost the same mass by the post-Newtonian
instability (e.g., Shapiro & Teukolsky 1983). With the more
massive seeds, the growth time to ∼ 2×109 M⊙ is reduced to
< 0.5 Gyr, below the age of the Universe at z = 7.1 by some
margin.

In a currently favored scenario (Bromm & Loeb
2003), the SMSs are supposed to be formed in
atomic-cooling halos where the H2 formation is pro-
hibited either by photodissociation due to strong far-
ultraviolet radiation (Omukai 2001; Wolcott-Green et al.
2011; Sugimura et al. 2014) or collisional dissociation by a
high-density shock (Inayoshi & Omukai 2012). In such ha-
los, a cloud collapses isothermally at ∼ 8000 K solely by the
atomic cooling (Omukai 2001). Without a major episode of
cooling, the cloud collapses monolithically avoiding signifi-
cant fragmentation until the formation of a protostar at its
center (Inayoshi et al. 2014; Becerra et al. 2015). The high
temperature in the pre-stellar cloud results in the high ac-
cretion rate of Ṁacc = 0.1-1 M⊙ yr−1 onto the protostar ac-
cording to the relation Ṁacc ∼ c3

s /G (e.g., Shu 1977).
Such rapid accretion must be maintained until the cen-

tral protostar grows to ! 105 M⊙ by circumventing the
possible obstacles. For example, in the case of the forma-
tion of ordinary first stars, radiative feedback, including the
photoevaporation of the accretion flows, plays an important
role in terminating their accretion growth and setting the
final mass at a few 10-100 M⊙ (e.g., McKee & Tan 2008;
Hosokawa et al. 2011, 2016; Susa 2013). But, this is not the
case for the SMS formation. With the accretion rate ex-
ceeding a threshold value, 0.03 M⊙ yr−1, the protostellar
evolution changes completely (Hosokawa et al. 2012, 2013).
Once the protostellar luminosity becomes close to the “clas-
sical” Eddington luminosity, LEdd,es = 4πcGM∗/κes where κes
is the Thomson scattering opacity, at a few 10 M⊙, the stel-
lar envelope swells greatly in radius reaching as large as
10-100 AU. With the stellar effective temperature as low
as ∼ 5000 K, UV photons are hardly emitted and radiative
feedback is too weak to halt the accretion. Resembling the
present-day red super-giant stars in appearance, the name
“super-giant protostars” (SGPSs) is coined for the rapidly
accreting stars with the bloated envelopes. It is also known
that the pulsational mass-loss rates from SGPSs are at most
∼ 10−3 M⊙ yr−1, two or three orders of magnitude lower than
the accretion rate (Inayoshi et al. 2013). Thus the pulsation
either would not prevent them growing supermassive.

A radiation driven stellar wind is another possible ob-
stacle for the SGPS growth. Similarly to the local Wolf-
Rayet (WR) stars, which exhibit the mass-loss at the
rates of Ṁw ∼ 10−5-10−4 M⊙ yr−1 in radiation-driven
winds (Gräfener et al. 2012), the SGPSs have luminosities
close to the classical Eddington value. In addition, the SG-
PSs have a layer of density inversion, where the density in-
creases outwardly, near the surface. Although the radiative

luminosity locally exceeds the Eddington value LEdd,local =
4πcGM∗/κ, where κ is the local opacity (Hosokawa et al.
2012, 2013), the hydrostatic equilibrium is still achieved as
the layer is pushed down by the weight of the outer dense
layers (e.g., Joss et al. 1973). If we omit the assumption of
hydrostatic equilibrium and allow the matter to flow, how-
ever, we may find a wind solution blowing from the stellar
surface (Ro & Matzner 2016). If such a stellar wind causes
the significant mass loss, the stellar mass growth via accre-
tion may be stopped at some moment before the formation
of a SMS. To examine such a possibility, we here construct
steady stellar wind solutions launched from the surface of
SGPSs assuming the spherical symmetry. We find that the
radiation pressure force in fact allows the smooth accelera-
tion from the subsonic to supersonic regime. The wind veloc-
ity, however, does not reach the stellar escape velocity since
the acceleration is suddenly over due to the opacity cutoff
below ∼ 104 K. We thus conclude that the stellar wind either
does not prevent the growth of a SGPS and it will eventually
grow to a SMS as long as the rapid accretion is maintained.

The rest of this paper is organized as follows. In Section
2, we describe the basic equations and the method to con-
struct the stellar wind models. In Section 3, we construct
a series of wind solutions passing through the sonic point
smoothly, without considering the connection to the stars
at their bases and classify the solutions. In Section 4, we
present the wind solutions connected to the SGPSs and ex-
amine whether the wind mass-loss occurs from the SGPSs.
Finally, Section 5 is devoted to the summary and discussion.

2 FORMULATION OF OPTICALLY THICK
WIND SOLUTIONS

In this section, we describe the basic equations and boundary
conditions to calculate the stellar wind solutions from SG-
PSs. In Figure 1, we illustrate the situation considered here.
We suppose that the SGPS gains the mass through the geo-
metrically thin accretion disk. Except for the equatorial re-
gion, stellar winds could be launched from the surface by the
radiation pressure force. We do not consider the interaction
between the accretion disk and the wind, for simplicity. As-
suming that the accretion region is small in comparison with
the outflowing region, we consider the steady wind structure
under the assumption of the spherical symmetry.

2.1 Basic Equations

We focus on the formulation valid for the optically thick
winds (Finzi & Wolf 1971; Żytkow 1972; Quinn & Paczynski
1985; Lee 1990; Kato & Iben 1992; Kato & Hachisu 1994;
Nugis & Lamers 2002; Dotan & Shaviv 2012; Ro & Matzner
2016), which is equivalent to assuming that the wind accel-
eration occurs beneath the photosphere as in the case of the
dense WR wind (e.g., Crowther 2007). The basic equations
governing the wind structure are as follows.

First, the equations of motion (EoM) and continu-
ity (EoC) are

v
dv
dr
+

1
ρ

dP
dr
+

GM∗
r2 = 0, (1)
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3) 定常の条件はよいかどうか？ Mbelow/Ṁw > Mup/Ṁw を満たすか？ ここで，
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1.2 Boundary Conditions

Eq. (6)の特異点で満たされるべき条件は，

v2c −
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µ
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2Tc
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µ

R
T 3
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ρc
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ここで，T ′
c ≡ dT

dr
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c
.

Tc, rc, ρcを与えると，特異点での条件により vc, T ′
cが評価できる．また，Eqs. (??),

(3)より Ṁw and Λが評価できる．

Λ

Ṁw

=
R
µ
Tc(3 + B)− R

µ

T ′
c

C
− GM

rc
(9)

ここで，C ≡ Ṁw
4π

R
µ

1
r2cDc

. これにより，臨界点から内外方向に数値的に積分が行える．
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ABSTRACT
Wolf-Rayet (W-R) stars are evolved massive stars that is in the core He burning
phase and that lose their hydrogen-rich envelope by radiation driven wind. Owing to
the dense wind, radiative acceleration in the optically thick region may be important
to understand the driving mechanism. In this paper, we construct W-R star models
with various masses, chemical composition, and wind clumping, by modeling them
as He star enshrouded in optically thick wind. We find that W-R winds could be
launched by optically thick wind when either the stellar mass, metallicity, or clumping
factor is large. This implies that opacity enhancement by spectral lines should be
important in the supersonic region to lift the dense winds to have terminal velocity that
exceeds the escape velocity. We also find that the following proportionality relation
holds in the optically thick wind Ṁw ∝ L∗ Z0.5, which is consistent with the empirical
correlation derived from the least-square fitting of observed values. This implies that
radiative acceleration in the optically thick region may drive W-R winds, since the
stellar structures within the sonic radius is determined independently of the wind
clumping in the supersonic region.
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1 INTRODUCTION

Wolf-Rayet (W-R) stars are evolved massive stars that show
strong and broad emission lines in their spectra. These fea-
tures indicate that they are enshrouded in dense circumstel-
lar medium (CSM) that is expanding at high speed. The
dense CSM is produced by powerful stellar winds whose
mass-loss rates and terminal velocities are observationally
determined in the range Ṁw ∼ 10−5-10−4 M⊙ yr−1 and
v∞ ∼ 1000-3000 km s−1, respectively (Hamann et al. 2006;
Sander et al. 2012).

W-R stars are classified into the three subtypes: WN 1

subtypes showing the strong lines of helium (He) and nitro-
gen (N) and WC/WO showing the lines of He, carbon (C)
and oxygen (O) (e.g., Crowther 2007). These lines imply that
the products of CNO cycle or triple-α reaction appear at the
surface of WN or WC/WO stars owing to the strong mass
loss. WN or WC/WO stars are the plausible candidates of

⋆ E-mail: nakauchi@astr.tohoku.ac.jp
1 WN is further divided into two subtypes: early and late types.
The former is hydrogen (H) deficient, while the latter contains a
substantial amount of H. In this paper, we focus only on the early
type.

the progenitors of Type Ib supernovae (SNe) or Type Ic SNe
and even long gamma-ray bursts (LGRBs; Heger et al. 2003;
Woosley 1993).

Mass loss has a great impact on the evolutionary path
and final fate of massive stars (Heger et al. 2003). Especially,
after the LIGO detection of GW150914, the nature of the
progenitor stars of the massive black hole binary (∼ 30 M⊙)
has been actively studied (Abbott et al. 2016). The ini-
tial mass and metallicity of a progenitor star differs dras-
tically depending on the treatment of mass loss in massive
stars (Kinugawa et al. 2014; Belczynski et al. 2016). Since it
is rather uncertain, more complete understanding about the
mass loss is needed.

W-R stars are usually modeled by chemically homoge-
neous He stars (Langer 1989). The structure of the wind
acceleration region, however, still remains unclear since the
sonic point is covered by the dense and optically thick
wind. It is problematic that the radius theoretically pre-
dicted from a hydrostatic He star model is smaller by up
to an order of magnitude compared to that determined ob-
servationally using a sophisticated atmospheric model (e.g.,
Crowther 2007). Hence, most of the observedW-R stars have
cooler temperatures compared to He main sequence (MS)
stars (Hamann et al. 2006; Sander et al. 2012).

© 2017 The Authors
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高速度の星風:

•スペクトルに水素の吸収, 輝線がない.
質量放出のためHeコアがむき出し.

Langer 1989WR星 ~ He星でモデル化される.

•WR星の構造は十分に理解されていない.
質量放出の機構とも関連.



Grafener et al. 2012
Hamann et al. 2006

WR星の半径問題

WR星 ~ Heコア + 光学的に厚い星風外層で 
モデル化するべき.
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after the LIGO detection of GW150914, the nature of the
progenitor stars of the massive black hole binary (∼ 30 M⊙)
has been actively studied (Abbott et al. 2016). The ini-
tial mass and metallicity of a progenitor star differs dras-
tically depending on the treatment of mass loss in massive
stars (Kinugawa et al. 2014; Belczynski et al. 2016). Since it
is rather uncertain, more complete understanding about the
mass loss is needed.

W-R stars are usually modeled by chemically homoge-
neous He stars (Langer 1989). The structure of the wind
acceleration region, however, still remains unclear since the
sonic point is covered by the dense and optically thick
wind. It is problematic that the radius theoretically pre-
dicted from a hydrostatic He star model is smaller by up
to an order of magnitude compared to that determined ob-
servationally using a sophisticated atmospheric model (e.g.,
Crowther 2007). Hence, most of the observedW-R stars have
cooler temperatures compared to He main sequence (MS)
stars (Hamann et al. 2006; Sander et al. 2012).
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ABSTRACT
Wolf-Rayet (W-R) stars are evolved massive stars that is in the core He burning
phase and that lose their hydrogen-rich envelope by radiation driven wind. Owing to
the dense wind, radiative acceleration in the optically thick region may be important
to understand the driving mechanism. In this paper, we construct W-R star models
with various masses, chemical composition, and wind clumping, by modeling them
as He star enshrouded in optically thick wind. We find that W-R winds could be
launched by optically thick wind when either the stellar mass, metallicity, or clumping
factor is large. This implies that opacity enhancement by spectral lines should be
important in the supersonic region to lift the dense winds to have terminal velocity that
exceeds the escape velocity. We also find that the following proportionality relation
holds in the optically thick wind Ṁw ∝ L∗ Z0.5, which is consistent with the empirical
correlation derived from the least-square fitting of observed values. This implies that
radiative acceleration in the optically thick region may drive W-R winds, since the
stellar structures within the sonic radius is determined independently of the wind
clumping in the supersonic region.

Key words: stars: Wolf-Rayet – stars: mass-loss – stars: winds, outflows

1 INTRODUCTION

Wolf-Rayet (W-R) stars are evolved massive stars that show
strong and broad emission lines in their spectra. These fea-
tures indicate that they are enshrouded in dense circumstel-
lar medium (CSM) that is expanding at high speed. The
dense CSM is produced by powerful stellar winds whose
mass-loss rates and terminal velocities are observationally
determined in the range Ṁw ∼ 10−5-10−4 M⊙ yr−1 and
v∞ ∼ 1000-3000 km s−1, respectively (Hamann et al. 2006;
Sander et al. 2012).

W-R stars are classified into the three subtypes: WN 1

subtypes showing the strong lines of helium (He) and nitro-
gen (N) and WC/WO showing the lines of He, carbon (C)
and oxygen (O) (e.g., Crowther 2007). These lines imply that
the products of CNO cycle or triple-α reaction appear at the
surface of WN or WC/WO stars owing to the strong mass
loss. WN or WC/WO stars are the plausible candidates of

⋆ E-mail: nakauchi@astr.tohoku.ac.jp
1 WN is further divided into two subtypes: early and late types.
The former is hydrogen (H) deficient, while the latter contains a
substantial amount of H. In this paper, we focus only on the early
type.

the progenitors of Type Ib supernovae (SNe) or Type Ic SNe
and even long gamma-ray bursts (LGRBs; Heger et al. 2003;
Woosley 1993).

Mass loss has a great impact on the evolutionary path
and final fate of massive stars (Heger et al. 2003). Especially,
after the LIGO detection of GW150914, the nature of the
progenitor stars of the massive black hole binary (∼ 30 M⊙)
has been actively studied (Abbott et al. 2016). The ini-
tial mass and metallicity of a progenitor star differs dras-
tically depending on the treatment of mass loss in massive
stars (Kinugawa et al. 2014; Belczynski et al. 2016). Since it
is rather uncertain, more complete understanding about the
mass loss is needed.

W-R stars are usually modeled by chemically homoge-
neous He stars (Langer 1989). The structure of the wind
acceleration region, however, still remains unclear since the
sonic point is covered by the dense and optically thick
wind. It is problematic that the radius theoretically pre-
dicted from a hydrostatic He star model is smaller by up
to an order of magnitude compared to that determined ob-
servationally using a sophisticated atmospheric model (e.g.,
Crowther 2007). Hence, most of the observedW-R stars have
cooler temperatures compared to He main sequence (MS)
stars (Hamann et al. 2006; Sander et al. 2012).
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from Eq. (4) as well. ∇rad is, however, calculated without
assuming the hydrostatic equilibrium as

∇rad =
3κLr P

16πaradcr2T4

(
−ρ−1 dP

dr

)−1
, (12)

by substituting Eq. (10) in it. Moreover, in the supersonic
region, we neglect the convective energy transport since the
velocity of the convective element should be less than the
sound speed and it may not exceed the energy transport by
advection.

2.3 Connecting Envelope to Hydrostatic Core

In the envelope, the equations (4, 9-11) have five unknown
functions, v(r), ρ(r),T (r), Lr , and Mr , while in the core re-
gion, the equations (1-4) have four (since v(r) = 0). A wind
solution that is smoothly connected to a core solution can
be obtained by providing five boundary conditions: two of
them at the core center, other two at the sonic point, and
the last one at the photosphere (Kato & Iben 1992).

First, at the core center, the luminosity and enclosed
mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (13)

Therefore, we can obtain one core solution, if we give the
values of density and temperature at the core center, ρc and
Tc.

Second, the following regularity conditions should be
satisfied at the sonic point. By substituting Eqs. (5) and (9)
into Eq. (10), it is rewritten as

1
v

dv
dr
=

⎡⎢⎢⎢⎢⎣
2
r

c2
T −

1
ρ

(
∂P
∂T

)

ρ

dT
dr
− GMr

r2

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
, (14)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed. We
can see from Eq. (14) that the sonic point is the singular
point of the equation. A transonic wind solution can be
obtained by requiring that the numerator of the equation
vanishes at the sonic point and that the velocity gradient
become finite there (Lamers & Cassinelli 1999). From these
regularity conditions, we can evaluate dT/dr (so do the ra-
diative luminosity) and the wind velocity at the sonic point,
for the given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass there
with the total mass of a star, M∗, since the total mass in the
supersonic region must be much less than that. To summa-
rize, the following two boundary conditions are set at the
sonic point:

v(rs) = cT(ρs,Ts) and Lrad(rs) = Lrad(rs, ρs,Ts) at M (rs) = M∗.
(15)

It should be noted that once the values of rs, ρs, and Ts are
specified, we can obtain one wind solution. This is because,
for a given set of (rs, ρs,Ts), Ṁw and Λ can be evaluated
from Eqs. (9) and (11), respectively, and the velocity gradi-
ent at the sonic point by using the de l’Hopital rule to Eq.
(14) (Lamers & Cassinelli 1999; Nugis & Lamers 2002).

Finally, at the photospheric radius (rph), where the ef-

fective temperature Teff ≡ (Lrad/4πr2σSB)1/4 with σSB the
Stefan-Boltzman constant becomes equal to the local tem-
perature, we require that the opacity-like variable τ ≡ κρr

takes a value as close to 3 as possible (Kato & Iben 1992;
Kato & Hachisu 1994). Therefore, the boundary condition
at the photosphere are represented as

Teff = T (rph) and τ(rph) ≃ 3. (16)

The values of the five parameters, ρc, Tc, rs, ρs, and
Ts, are determined iteratively so that the wind solution is
smoothly connected to the hydrostatic core at some radius
rm between the core center and the sonic point. Here, we
choose rm at the radius where the temperature becomes
around 108 K, i.e., T (rm) ≃ 108 K, so that the energy gener-
ation by He-burning is negligible for r ≥ rm. We first fix the
value of ρs and iteratively determine the values of ρc, Tc, rs,
and Ts so that the enclosed mass, density, and temperature
should be continuous, and the total luminosity should be
conserved at the matching radius rm:

Mcore(rm) = Mwind(rm),
ρcore(rm) = ρwind(rm), (17)

Tcore(rm) = Twind(rm),

Lcore(rm) = Lwind(rm)

+ Ṁw '
(
v2(rm)

2 +
5R
2µTwind(rm) +

4arad
3

T4
wind(rm)
ρwind(rm)

)
*

= Λ + Ṁw

∫ rs

rm

GMr

r2 dr . (18)

Next, ρs is determined so that the wind solution satisfies the
photospheric condition Eq. (13). Hence, we have obtained a
WR model.

2.4 Models

Chemical Composition

In this paper, we consider two types of WR models, WN and
WC models. Since we consider H-free WR models, the mass
fraction of H is set to zero, X = 0, in both models. The mass
fraction of He, Y , is calculated from Y = 1 − Z̃, where Z̃ is
the mass fraction of metals heavier than He. In WN models,
we suppose that Z̃ is identical with the metallicity Z in solar
composition (Grevesse & Noels 1993), while in WC models,
the mass fractions of C and O are enhanced by dXC = 0.4
and dXO = 0.1, i.e., Z̃ = Z + dXC + dXO. In each model, we
consider three different metallicities of Z = 1, 2, and 4 Z⊙
with Z⊙ = 0.02 the solar metallicity.

Wind Clumping

Spectroscopic observations suggest that the winds of O stars
and WR stars are inhomogeneous and clumpy. One evi-
dence is that a number of emission subpeaks are super-
posed on the broad emission lines, and they move from
the line center to the line edge in a few hours. This fea-
ture is modeled by clumps propagating radially through the
line emission regions (Moffat et al. 1988; Lépine & Moffat
1999). The clumped wind model is also favored to repro-
duce the observed ratio of the line strength to that of
the electron scattering wing on the red side (Hillier 1991;
Hamann & Koesterke 1998). It is often underestimated com-
pared to the observation in the smooth wind model.
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sound speed and it may not exceed the energy transport by
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gion, the equations (1-4) have four (since v(r) = 0). A wind
solution that is smoothly connected to a core solution can
be obtained by providing five boundary conditions: two of
them at the core center, other two at the sonic point, and
the last one at the photosphere (Kato & Iben 1992).

First, at the core center, the luminosity and enclosed
mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (13)

Therefore, we can obtain one core solution, if we give the
values of density and temperature at the core center, ρc and
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(∂P/∂ρ)T is the isothermal sound speed. We
can see from Eq. (14) that the sonic point is the singular
point of the equation. A transonic wind solution can be
obtained by requiring that the numerator of the equation
vanishes at the sonic point and that the velocity gradient
become finite there (Lamers & Cassinelli 1999). From these
regularity conditions, we can evaluate dT/dr (so do the ra-
diative luminosity) and the wind velocity at the sonic point,
for the given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass there
with the total mass of a star, M∗, since the total mass in the
supersonic region must be much less than that. To summa-
rize, the following two boundary conditions are set at the
sonic point:

v(rs) = cT(ρs,Ts) and Lrad(rs) = Lrad(rs, ρs,Ts) at M (rs) = M∗.
(15)

It should be noted that once the values of rs, ρs, and Ts are
specified, we can obtain one wind solution. This is because,
for a given set of (rs, ρs,Ts), Ṁw and Λ can be evaluated
from Eqs. (9) and (11), respectively, and the velocity gradi-
ent at the sonic point by using the de l’Hopital rule to Eq.
(14) (Lamers & Cassinelli 1999; Nugis & Lamers 2002).

Finally, at the photospheric radius (rph), where the ef-

fective temperature Teff ≡ (Lrad/4πr2σSB)1/4 with σSB the
Stefan-Boltzman constant becomes equal to the local tem-
perature, we require that the opacity-like variable τ ≡ κρr

takes a value as close to 3 as possible (Kato & Iben 1992;
Kato & Hachisu 1994). Therefore, the boundary condition
at the photosphere are represented as

Teff = T (rph) and τ(rph) ≃ 3. (16)

The values of the five parameters, ρc, Tc, rs, ρs, and
Ts, are determined iteratively so that the wind solution is
smoothly connected to the hydrostatic core at some radius
rm between the core center and the sonic point. Here, we
choose rm at the radius where the temperature becomes
around 108 K, i.e., T (rm) ≃ 108 K, so that the energy gener-
ation by He-burning is negligible for r ≥ rm. We first fix the
value of ρs and iteratively determine the values of ρc, Tc, rs,
and Ts so that the enclosed mass, density, and temperature
should be continuous, and the total luminosity should be
conserved at the matching radius rm:

Mcore(rm) = Mwind(rm),
ρcore(rm) = ρwind(rm), (17)

Tcore(rm) = Twind(rm),

Lcore(rm) = Lwind(rm)
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Next, ρs is determined so that the wind solution satisfies the
photospheric condition Eq. (13). Hence, we have obtained a
WR model.

2.4 Models

Chemical Composition

In this paper, we consider two types of WR models, WN and
WC models. Since we consider H-free WR models, the mass
fraction of H is set to zero, X = 0, in both models. The mass
fraction of He, Y , is calculated from Y = 1 − Z̃, where Z̃ is
the mass fraction of metals heavier than He. In WN models,
we suppose that Z̃ is identical with the metallicity Z in solar
composition (Grevesse & Noels 1993), while in WC models,
the mass fractions of C and O are enhanced by dXC = 0.4
and dXO = 0.1, i.e., Z̃ = Z + dXC + dXO. In each model, we
consider three different metallicities of Z = 1, 2, and 4 Z⊙
with Z⊙ = 0.02 the solar metallicity.

Wind Clumping

Spectroscopic observations suggest that the winds of O stars
and WR stars are inhomogeneous and clumpy. One evi-
dence is that a number of emission subpeaks are super-
posed on the broad emission lines, and they move from
the line center to the line edge in a few hours. This fea-
ture is modeled by clumps propagating radially through the
line emission regions (Moffat et al. 1988; Lépine & Moffat
1999). The clumped wind model is also favored to repro-
duce the observed ratio of the line strength to that of
the electron scattering wing on the red side (Hillier 1991;
Hamann & Koesterke 1998). It is often underestimated com-
pared to the observation in the smooth wind model.
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ABSTRACT
Wolf-Rayet (W-R) stars are evolved massive stars that is in the core He burning
phase and that lose their hydrogen-rich envelope by radiation driven wind. Owing to
the dense wind, radiative acceleration in the optically thick region may be important
to understand the driving mechanism. In this paper, we construct W-R star models
with various masses, chemical composition, and wind clumping, by modeling them
as He star enshrouded in optically thick wind. We find that W-R winds could be
launched by optically thick wind when either the stellar mass, metallicity, or clumping
factor is large. This implies that opacity enhancement by spectral lines should be
important in the supersonic region to lift the dense winds to have terminal velocity that
exceeds the escape velocity. We also find that the following proportionality relation
holds in the optically thick wind Ṁw ∝ L∗ Z0.5, which is consistent with the empirical
correlation derived from the least-square fitting of observed values. This implies that
radiative acceleration in the optically thick region may drive W-R winds, since the
stellar structures within the sonic radius is determined independently of the wind
clumping in the supersonic region.

Key words: stars: Wolf-Rayet – stars: mass-loss – stars: winds, outflows

1 INTRODUCTION

Wolf-Rayet (W-R) stars are evolved massive stars that show
strong and broad emission lines in their spectra. These fea-
tures indicate that they are enshrouded in dense circumstel-
lar medium (CSM) that is expanding at high speed. The
dense CSM is produced by powerful stellar winds whose
mass-loss rates and terminal velocities are observationally
determined in the range Ṁw ∼ 10−5-10−4 M⊙ yr−1 and
v∞ ∼ 1000-3000 km s−1, respectively (Hamann et al. 2006;
Sander et al. 2012).

W-R stars are classified into the three subtypes: WN 1

subtypes showing the strong lines of helium (He) and nitro-
gen (N) and WC/WO showing the lines of He, carbon (C)
and oxygen (O) (e.g., Crowther 2007). These lines imply that
the products of CNO cycle or triple-α reaction appear at the
surface of WN or WC/WO stars owing to the strong mass
loss. WN or WC/WO stars are the plausible candidates of

⋆ E-mail: nakauchi@astr.tohoku.ac.jp
1 WN is further divided into two subtypes: early and late types.
The former is hydrogen (H) deficient, while the latter contains a
substantial amount of H. In this paper, we focus only on the early
type.

the progenitors of Type Ib supernovae (SNe) or Type Ic SNe
and even long gamma-ray bursts (LGRBs; Heger et al. 2003;
Woosley 1993).

Mass loss has a great impact on the evolutionary path
and final fate of massive stars (Heger et al. 2003). Especially,
after the LIGO detection of GW150914, the nature of the
progenitor stars of the massive black hole binary (∼ 30 M⊙)
has been actively studied (Abbott et al. 2016). The ini-
tial mass and metallicity of a progenitor star differs dras-
tically depending on the treatment of mass loss in massive
stars (Kinugawa et al. 2014; Belczynski et al. 2016). Since it
is rather uncertain, more complete understanding about the
mass loss is needed.

W-R stars are usually modeled by chemically homoge-
neous He stars (Langer 1989). The structure of the wind
acceleration region, however, still remains unclear since the
sonic point is covered by the dense and optically thick
wind. It is problematic that the radius theoretically pre-
dicted from a hydrostatic He star model is smaller by up
to an order of magnitude compared to that determined ob-
servationally using a sophisticated atmospheric model (e.g.,
Crowther 2007). Hence, most of the observedW-R stars have
cooler temperatures compared to He main sequence (MS)
stars (Hamann et al. 2006; Sander et al. 2012).

© 2017 The Authors
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Figure 5. Same as Figure 4, but for the b ≃ v(rs) case.

0.2

0.4

0.6

0.8

 1  2  3  4  5  6  7  8  9

κ 
[c

m
2  g

-1
]

r (Rsun)

D = 1
4

16

0.5

1.0

1.5

2.0

2.5 M = 48 Msun
Z = 2 Zsun

Γ
r

 1

 10

 100

 1000

v 
(k

m
 s

-1
) 

Figure 6. Same as Figure 4, but for a WC model.
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3.2.2 b ≃ v(rs) Case

3.3 WC Models

In Figure 6, we show the dependence of the wind structures
on the chemical composition and the wind clumping for M∗ =
48 M⊙ and Z = 4 Z⊙. In each panel, the red color corresponds
to the WN models, and the blue one to the WC models. The
solid and dashed lines correspond to the clumping factors of
D = 16 and 1, respectively. Both models have qualitatively
the same structures, but WC models have more radially-
extended wind envelopes. For D = 16, the terminal velocity
is calculated as v∞ ≃ 2000 km s−1, which is comparable to the
observed WC winds (Sander et al. 2012). On the other hand,
for D = 1, it is v∞ ≃ 1300 km s−1 and corresponds to the
low end values of the observed velocity distribution. In both
cases, the mass-loss rate is calculated as ≃ 2.7×10−4 M⊙ yr−1,
which is larger than those any WC stars have. Note that the
mass-loss rate is independent of the wind clumping, as we
discuss in the previous section.

4 ṀW-L∗ RELATION AND COMPARISON
WITH OBSERVATION

According to the results of the previous sections, a W-R
star model can be constructed by giving M∗, chemical com-
position, and clumping factors D as parameters. Especially,
we find that the wind clumping has little effect on the stel-
lar structures within the sonic radius, and that L∗ and Ṁw
are determined only by M∗ and the chemical composition.
This implies that we can derive Ṁw-L∗ relations for W-R star
winds, in addition to the well-known M∗-L∗ relations (Langer
1989; Schaerer & Maeder 1992). Since we neglect the radi-
ation force by line opacity, the rather high value for wind
clumping D = 100 is required to construct wind solutions.

In Figure 7, we show the Ṁw-L∗ relation which is ob-
tained in this paper. We also show the observed values of the
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ABSTRACT
Wolf-Rayet (W-R) stars are evolved massive stars that is in the core He burning
phase and that lose their hydrogen-rich envelope by radiation driven wind. Owing to
the dense wind, radiative acceleration in the optically thick region may be important
to understand the driving mechanism. In this paper, we construct W-R star models
with various masses, chemical composition, and wind clumping, by modeling them
as He star enshrouded in optically thick wind. We find that W-R winds could be
launched by optically thick wind when either the stellar mass, metallicity, or clumping
factor is large. This implies that opacity enhancement by spectral lines should be
important in the supersonic region to lift the dense winds to have terminal velocity that
exceeds the escape velocity. We also find that the following proportionality relation
holds in the optically thick wind Ṁw ∝ L∗ Z0.5, which is consistent with the empirical
correlation derived from the least-square fitting of observed values. This implies that
radiative acceleration in the optically thick region may drive W-R winds, since the
stellar structures within the sonic radius is determined independently of the wind
clumping in the supersonic region.
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1 INTRODUCTION

Wolf-Rayet (W-R) stars are evolved massive stars that show
strong and broad emission lines in their spectra. These fea-
tures indicate that they are enshrouded in dense circumstel-
lar medium (CSM) that is expanding at high speed. The
dense CSM is produced by powerful stellar winds whose
mass-loss rates and terminal velocities are observationally
determined in the range Ṁw ∼ 10−5-10−4 M⊙ yr−1 and
v∞ ∼ 1000-3000 km s−1, respectively (Hamann et al. 2006;
Sander et al. 2012).

W-R stars are classified into the three subtypes: WN 1

subtypes showing the strong lines of helium (He) and nitro-
gen (N) and WC/WO showing the lines of He, carbon (C)
and oxygen (O) (e.g., Crowther 2007). These lines imply that
the products of CNO cycle or triple-α reaction appear at the
surface of WN or WC/WO stars owing to the strong mass
loss. WN or WC/WO stars are the plausible candidates of

⋆ E-mail: nakauchi@astr.tohoku.ac.jp
1 WN is further divided into two subtypes: early and late types.
The former is hydrogen (H) deficient, while the latter contains a
substantial amount of H. In this paper, we focus only on the early
type.

the progenitors of Type Ib supernovae (SNe) or Type Ic SNe
and even long gamma-ray bursts (LGRBs; Heger et al. 2003;
Woosley 1993).

Mass loss has a great impact on the evolutionary path
and final fate of massive stars (Heger et al. 2003). Especially,
after the LIGO detection of GW150914, the nature of the
progenitor stars of the massive black hole binary (∼ 30 M⊙)
has been actively studied (Abbott et al. 2016). The ini-
tial mass and metallicity of a progenitor star differs dras-
tically depending on the treatment of mass loss in massive
stars (Kinugawa et al. 2014; Belczynski et al. 2016). Since it
is rather uncertain, more complete understanding about the
mass loss is needed.

W-R stars are usually modeled by chemically homoge-
neous He stars (Langer 1989). The structure of the wind
acceleration region, however, still remains unclear since the
sonic point is covered by the dense and optically thick
wind. It is problematic that the radius theoretically pre-
dicted from a hydrostatic He star model is smaller by up
to an order of magnitude compared to that determined ob-
servationally using a sophisticated atmospheric model (e.g.,
Crowther 2007). Hence, most of the observedW-R stars have
cooler temperatures compared to He main sequence (MS)
stars (Hamann et al. 2006; Sander et al. 2012).
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Mass loss has a great impact on the evolutionary path
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after the LIGO detection of GW150914, the nature of the
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tial mass and metallicity of a progenitor star differs dras-
tically depending on the treatment of mass loss in massive
stars (Kinugawa et al. 2014; Belczynski et al. 2016). Since it
is rather uncertain, more complete understanding about the
mass loss is needed.

W-R stars are usually modeled by chemically homoge-
neous He stars (Langer 1989). The structure of the wind
acceleration region, however, still remains unclear since the
sonic point is covered by the dense and optically thick
wind. It is problematic that the radius theoretically pre-
dicted from a hydrostatic He star model is smaller by up
to an order of magnitude compared to that determined ob-
servationally using a sophisticated atmospheric model (e.g.,
Crowther 2007). Hence, most of the observedW-R stars have
cooler temperatures compared to He main sequence (MS)
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人為的なopacity lawを使用していた.問題点:

WR星 ~ Heコア + 光学的に厚い星風外層でモデル化したい.

Iglesias & Rogers 1996
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WN models, we suppose that Z̃ is identical with the metal-
licity Z in solar composition (Grevesse & Noels 1993), while
in WC models, the mass fractions of C and O are enhanced
by dXC = 0.4 and dXO = 0.1, i.e., Z̃ = Z + dXC + dXO. In each
model, we consider three different metallicities of Z = 1, 2,
and 4 Z⊙ with Z⊙ = 0.02 the solar metallicity.

Wind Clumping

According to the detailed modeling of WR atmo-
sphere with radiation hydrodynamics, wind clumping
is considered to be indispensable for reproducing the
SED (Hamann & Koesterke 1998). We include this effect
by mimicking the functional form used in Hillier & Miller
(1999). The clump is optically thin and its volume filling
factor fV is

fV(r) = D−1 + (1 − D−1) exp
(
− v(r) − vcl

vcl

)
, v(r) ≥ vcl. (17)

where D is the clumping factor and we fix vcl = 200 km s−1 in
this paper (Hillier & Miller 1999). At v(r) ≥ vcl, the opacity
is modified as κ(ρ,T ) → κ( f −1

V ρ,T ) (Gräfener et al. 2012).
We also consider the case of vcl = 1.1v(rs) ≃ v(rs). In this

case, wind clumping and the opacity enhancement become
effective in the entire supersonic region.

fV(r) = D−1 + (1 − D−1) exp
(
− v(r) − vs

vs

)
, v(r) ≥ vs. (18)

T (105 K)

Teff = T (rph) τ(rph) = 3 vcl ≃ v(rs) D = 100 ρcl = fclρ (19)

dLr

dr
= 4πr2ρϵnuc, fV ≡ Vcl/V ρcl = (V/Vcl)ρ = f −1

V ρ D ∼ f −1
V

(20)

Ṁw,NL ∝ L1.29
∗ Y1.7Z0.5 (21)

v
dv
dr
∼ κLrad

4πcr2 (22)

3 RESULTS

3.1 WN Models without Wind Clumping

First, we show the stellar structure of a WN model with
M∗ = 48 M⊙, Z = 1 Z⊙, and D = 1 (Figure 1). In this model,
the matching point and the sonic point (filled circle) are lo-
cated at rm ≃ 1 R⊙ and rs ≃ 2.5 R⊙, respectively. While the
wind velocity is sufficiently subsonic (v ! 1 cm s−1) around
the matching radius, it is steeply accelerated to a supersonic
speed at the sonic radius (panel a). It finally reaches a con-
stant speed of v∞ ∼ 8 × 107 cm s−1, which is smaller than
the observed wind velocity of WN stars by a factor of a
few (Hamann et al. 2006). In our formulation, the mass-loss
rate is determined uniquely as an eigenvalue of the equa-
tions. In this model, we find Ṁw ≃ 10−4 M⊙ yr−1, which
corresponds to the high end of the observed mass-loss rates.
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Figure 1. Stellar structures of a WN model with M∗ = 48 M⊙,
Z = 1 Z⊙, and D = 1. In each panel, the filled circle shows the
location of the sonic point. Panel a): The velocity structure of
the wind. The purple line shows the wind velocity, the green
line isothermal sound speed, and the grey-shaded region where
v(r ) ≥ vesc (r ) holds. Panel b): The density profile. Panel c): The
temperature profile. Panel d): The luminosity structure. The pur-
ple line shows the total luminosity and the green one the local
Eddington luminosity.

The density and temperature profiles show rapid decline
around rs (panels b and c). In the supersonic region, density
decreases inversely proportional to the square of radius, ρ ∝
r−2, since the wind velocity is almost constant there. We find
that the radiation pressure dominates the gas pressure over
the supersonic region, while they are almost the same order
of magnitude in the hydrostatic core and subsonic wind.

The luminosity is almost constant (Lph ≃ 1.7 × 106 L⊙)
throughout the wind envelope (panel d). According to the
mass-luminosity relation obtained from the hydrostatic W-R
models (Langer 1989; Schaerer & Maeder 1992):

log
(

L∗
L⊙

)
= 3.03 + 2.70 log

(
M∗
M⊙

)
− 0.46

(
log

(
M∗
M⊙

))2
, (23)

the stellar luminosity is evaluated as L∗ ≃ 1.85×106 L⊙ with
M∗ = 48 M⊙, which is consistent with our result.

For wind acceleration, the presence of the super-
Eddington layer becomes a key. While the luminosity is
sub-Eddington in the subsonic region, it turns into super-
Eddington beyond the sonic point. At r ∼ 4 R⊙, however, it
returns to sub-Eddington again. Around this point, the wind
acceleration stops and the wind velocity begins to decrease
gradually. The super-Eddington layer is induced by the iron
opacity bump at T ≃ 2 × 105 K, which can be confirmed
from Figure 2. We find that wind acceleration is initiated
by iron opacity bump as found in Nugis & Lamers (2002);
Gräfener & Hamann (2005)

We consider, however, that the above model is not ap-
propriate as a steady wind solution. This is because in steady
wind solutions, the velocity at the photosphere should ex-
ceed the local escape velocity:

v(rph) ≥ vesc(rph). (24)

Otherwise, the wind velocity will fall down to a subsonic
speed beyond the photosphere, if it were not for additional
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3) 定常の条件はよいかどうか？ Mbelow/Ṁw > Mup/Ṁw を満たすか？ ここで，
Mbelow(Mup)は r∗ ≤ r ≤ rc (rc ≤ r ≤ rph)に含まれる質量．定常流ならば，r < rcの
部分は物質流の供給源であって欲しい．

1.2 Boundary Conditions

Eq. (6)の特異点で満たされるべき条件は，

v2c −
R
µ
Tc = 0, (7)

T ′
c =

(
2Tc

rc
− GM

r2c

µ

R

)
/(1 + B), B =

4a

3

µ

R
T 3
c

ρc
(8)

ここで，T ′
c ≡ dT

dr

∣∣
c
.

Tc, rc, ρcを与えると，特異点での条件により vc, T ′
cが評価できる．また，Eqs. (??),

(3)より Ṁw and Λが評価できる．

Λ

Ṁw

=
R
µ
Tc(3 + B)− R

µ

T ′
c

C
− GM

rc
(9)

ここで，C ≡ Ṁw
4π

R
µ

1
r2cDc

. これにより，臨界点から内外方向に数値的に積分が行える．

2

Wind 
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光球

光学的に厚い恒星風

Kippenhahn et al. 2012
Kato & Iben 1992Basic Equations

★ Wind Envelope: spherical & steady flow
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2.2 Optically Thick Wind Envelope

The basic equations to construct an optically thick wind
solution are given below. Note that our formulation is valid
as long as the wind is optically thick (e.g., Żytkow 1972;
Kato & Iben 1992).

Ṁw ≡ 4πr2ρv = const., dMr

dr
= 4πr2ρ, (8)

v
dv
dr
+

1
ρ

dP
dr
+

GMr

r2 = 0, (9)

Λ ≡ Lr + Ṁw

(
v2

2 +
5RT
2µ +

4aradT4

3ρ +

∫ r

rs

GMr

r2 dr
)
= const.,

(10)

where v is the wind velocity, Ṁw the mass-loss rate, Λ the
energy constant, rs the sonic point radius. In Eq. (10), we
neglect the nuclear energy generation, since the wind tem-
perature is too low for it to become significant. It should be
noted that in the limit of Ṁw → 0 and vdv/dr → 0, Eqs. (8-
10) return to Eqs. (1-3) with ϵnuc = 0.

In the wind region, the total luminosity Lr is calcu-
lated from Eq. (4) as well. ∇rad is, however, calculated
without assuming the hydrostatic equilibrium as ∇rad =
3κLr P/(16πaradcr2T4)/(−ρ−1dP/dr) by substituting Eq. (9)
in it. Moreover, in the supersonic region, we neglect the con-
vective energy transport since the velocity of the convective
element should be less than the sound speed and it may not
exceed the energy transport by advection.

2.3 Connecting Wind Envelope to Hydrostatic
Core

In the wind region, the equations (4, 8-10) have five un-
known functions, v(r), ρ(r),T (r), Lr , and Mr , while in the
core region, the equations (1-4) have four (since v(r) = 0). A
wind solution that is smoothly connected to a core solution
can be obtained by providing five boundary conditions: two
of them at the core center, other two at the sonic point, and
the last one at the photosphere.

First, at the core center, the luminosity and enclosed
mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (11)

Therefore, we can obtain one core solution, if we give the
values of density and temperature at the core center, ρc and
Tc.

Second, the following regularity conditions should be
satisfied at the sonic point. By substituting Eqs. (5) and (8)
into Eq. (9), it is rewritten as

1
v

dv
dr
=

⎡⎢⎢⎢⎢⎣
2
r

c2
T −

1
ρ

(
∂P
∂T

)

ρ

dT
dr
− GMr

r2

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
, (12)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed. We
can see from Eq. (12) that the sonic point is the singular
point of the equation. A transonic wind solution can be
obtained by requiring that the numerator of the equation
vanishes at the sonic point and that the velocity gradient
become finite there (Lamers & Cassinelli 1999). From these

regularity conditions, we can evaluate dT/dr (so do the ra-
diative luminosity) and the wind velocity at the sonic point,
for the given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass there
with the total mass of a star, M∗, since the total mass in the
supersonic region must be much less than that. To summa-
rize, the following two boundary conditions are set at the
sonic point:

v(rs) = cT(ρs,Ts) and Lrad(rs) = Lrad(rs, ρs,Ts) at M (rs) = M∗.
(13)

It should be noted that once the values of rs, ρs, and Ts are
specified, we can obtain one wind solution. This is because,
for a given set of (rs, ρs,Ts), Ṁw and Λ can be evaluated
from Eqs. (8) and (10), respectively, and the velocity gradi-
ent at the sonic point by using the de l’Hopital rule to Eq.
(12) (Lamers & Cassinelli 1999; Nugis & Lamers 2002).

Finally, at the photospheric radius (rph), where the ef-

fective temperature Teff ≡ (Lrad/4πr2σSB)1/4 with σSB the
Stefan-Boltzman constant becomes equal to the local tem-
perature, we require that the opacity-like variable τ ≡ κρr
takes a value as close to 3 as possible (Kato & Iben 1992;
Kato & Hachisu 1994). Therefore, the boundary condition
at the photosphere are represented as

Teff = T (rph) and τ(rph) ≃ 3. (14)

The values of the five parameters, ρc, Tc, rs, ρs, and
Ts, are determined iteratively so that the wind solution is
smoothly connected to the hydrostatic core at some radius
rm between the core center and the sonic point. Here, we
choose rm at the radius where the temperature becomes
around 108 K, i.e., T (rm) ≃ 108 K. We first fix the value of
ρs and iteratively determine the values of ρc, Tc, rs, and Ts
so that the enclosed mass, density, and temperature should
be continuous, and the total luminosity should be conserved
at the matching radius rm:

Mcore(rm) = Mwind(rm),
ρcore(rm) = ρwind(rm), (15)

Tcore(rm) = Twind(rm),

Lcore(rm) = Lwind(rm)

+ Ṁw '
(
v2(rm)

2 +
5R
2µTwind(rm) +

4arad
3

T4
wind(rm)
ρwind(rm)

)
*

= Λ + Ṁw

∫ rs

rm

GMr

r2 dr . (16)

Next, ρs is determined so that the wind solution satisfies the
photospheric condition Eq. (14). Hence, we have obtained a
self-consistent W-R model.

2.4 Models

Chemical Composition

In this paper, we consider two types of W-R models, WN
models and WC models. Since we consider H-free W-R mod-
els, the mass fraction of H is set to zero, X = 0, in both mod-
els. The mass fraction of He, Y , is calculated from Y = 1− Z̃,
where Z̃ is the mass fraction of metals heavier than He. In
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Gräfener et al. (2012) considered He-star models with
inflated envelopes to resolve the radius problem (see also
McClelland & Eldridge 2016). Inflated envelopes can de-
velop, because the density scale height increases when the
luminosity near the surface approaches the local Eddington
value owing to the opacity bump at ∼ 2 × 105 K produced
by a number of bound-bound transitions of iron nuclei 2.
The radial extent can be several times as large as the core
radius (Ishii et al. 1999; Petrovic et al. 2006). At the outer-
most layers, the luminosity becomes even super-Eddington
and the density increases with radius (the so-called density
inversion). This is because the gas pressure gradient should
be positive in order to keep hydrostatic equilibrium in the
super-Eddington layers (Joss et al. 1973).

There are some discrepancies in the envelope infla-
tion model. By using the hydrodynamic stellar evolution
code, Petrovic et al. (2006) studied the effect of the mass
loss on the inflated envelope of a He star, and found
that it is removed by the typical W-R mass loss (see also
McClelland & Eldridge 2016). Moreover, the density inver-
sion may imply the presence of a steady wind solution, if
the assumption of hydrostatic equilibrium is relaxed in these
layers. Considering that the observed W-R stars have high-
speed winds, it may be plausible to construct a W-R model
by combining a hydrostatic core with a dynamical wind en-
velope.

So far, there are some studies on this line (Kato & Iben
1992; Ro & Matzner 2016). Ro & Matzner (2016) con-
structed a series of wind solutions which are connected to
the He-star model obtained in Gräfener et al. (2012). For all
of the solutions, however, the wind velocity never reaches
and exceeds the escape velocity, since the acceleration stops
at some radius in the supersonic region. They ascribed this
discrepancy to their lack of considering the enhancement of
the line opacity by the Doppler shifting. On the other hand,
Kato & Iben (1992) obtained self-consistent W-R models by
simultaneously solving the structure of a hydrostatic core
and a dynamical wind envelope and by connecting them
smoothly. It is problematic, however, that they assumed an
artificial opacity law in order to obtain a wind envelope so-
lution whose velocity exceeds the escape velocity at the pho-
tosphere.

In this paper, we calculate a series of self-consistent W-
R models by using the formulation of Kato & Iben (1992)
and the updated opacity law. In Section 2, we show the basic
equations and the boundary conditions for the hydrostatic
core and wind envelope. We consider W-R models with var-
ious metallicities, while Kato & Iben (1992) focused only on
the solar metallicity case. We also take the effect of wind in-
homogeneity into account by introducing the clumping fac-
tor as was done in Gräfener et al. (2012), who studied its
effect on the inflated envelopes. In Section 3, we show our
results by discussing the dependence of the obtained W-
R structures on the mass, chemical composition, and wind
clumpiness. The advantage of our model is that the mass-
loss rate can be uniquely determined as a function of these
parameters. In Section 4, we derive the mass-loss rate to lu-

2 Envelope inflation and density inversion near the surface has
also been reported from the evolution calculation of massive stars
in core H burning phase (Sanyal et al. 2015).

minosity relations and find that they are consistent with the
observed W-R stars and the empirically derived formulae in
Nugis & Lamers (2000). In Section 5, after summarizing the
conclusions, we discuss the remaining problems of our study.

2 METHODS AND MODELS

2.1 Hydrostatic He Core

The basic equations to construct a hydrostatic He-burning
core are as follows (Kippenhahn et al. 2012):

dr
dP
= − r2

GMr ρ
, (1)

dMr

dP
= − 4πr4

GMr
, (2)

dLr

dP
= − 4πr4

GMr
ϵnuc, (3)

Lr = Lrad + Lconv, (4)

where G is the gravitational constant, P the total pressure,
Mr the enclosed mass within the radius r, ρ the density,
Lr the total luminosity, ϵnuc the nuclear energy generation
rate via the triple-α reaction, Lrad the radiative luminosity,
and Lconv the convective luminosity. The total pressure P is
composed of the radiation pressure Prad and the gas pressure
Pgas:

P = Pgas + Prad =
R
µ
ρT +

1
3 aradT4, (5)

where arad is the radiation constant, R the gas constant, T
the temperature, and µ the mean molecular weight. Since we
consider chemically homogeneous He stars, µ is taken as a
const throughout the core and wind envelope in this paper.
Radiative luminosity Lrad is calculated using the diffusion
approximation:

Lrad = −
16πaradcr2T3

3κρ
dT
dr
, (6)

where c is the speed of light, and κ(ρ,T ) the opacity. For κ,
we adopt the Rosseland mean opacity in tabular form pro-
vided by the OPAL project (Iglesias & Rogers 1996). Con-
vective luminosity Lconv is calculated by using the mixing-
length theory (Eggleton 1971), if the temperature gradient
satisfies the Schwarzschild criterion for the onset of convec-
tion (Kippenhahn et al. 2012):

∇rad ≥ ∇ad, (7)

where ∇ad ≡ (d log P/d logT )ad = 2(4 − 3β)/(32 − 24β −
3β2) with β ≡ Pgas/P is the adiabatic temperature
gradient for constant µ, and ∇rad ≡ d log P/d logT =

3κLr P/(16πaradcGMrT4) in the core. Otherwise, all of the
luminosity can be transported by radiation, so that Lr = Lrad
and Lconv = 0.

MNRAS 000, 1–8 (2017)

•Energy:

Wolf-Rayet Star Models and Wind Mass-Loss Rates 3

2.2 Optically Thick Wind Envelope

The basic equations to construct an optically thick wind
solution are given below. Note that our formulation is valid
as long as the wind is optically thick (e.g., Żytkow 1972;
Kato & Iben 1992).

Ṁw ≡ 4πr2ρv = const., dMr

dr
= 4πr2ρ, (8)

v
dv
dr
+

1
ρ

dP
dr
+

GMr

r2 = 0, (9)

Λ ≡ Lr + Ṁw

(
v2

2 +
5RT
2µ +

4aradT4

3ρ +

∫ r

rs

GMr

r2 dr
)
= const.,

(10)

where v is the wind velocity, Ṁw the mass-loss rate, Λ the
energy constant, rs the sonic point radius. In Eq. (10), we
neglect the nuclear energy generation, since the wind tem-
perature is too low for it to become significant. It should be
noted that in the limit of Ṁw → 0 and vdv/dr → 0, Eqs. (8-
10) return to Eqs. (1-3) with ϵnuc = 0.

In the wind region, the total luminosity Lr is calcu-
lated from Eq. (4) as well. ∇rad is, however, calculated
without assuming the hydrostatic equilibrium as ∇rad =
3κLr P/(16πaradcr2T4)/(−ρ−1dP/dr) by substituting Eq. (9)
in it. Moreover, in the supersonic region, we neglect the con-
vective energy transport since the velocity of the convective
element should be less than the sound speed and it may not
exceed the energy transport by advection.

2.3 Connecting Wind Envelope to Hydrostatic
Core

In the wind region, the equations (4, 8-10) have five un-
known functions, v(r), ρ(r),T (r), Lr , and Mr , while in the
core region, the equations (1-4) have four (since v(r) = 0). A
wind solution that is smoothly connected to a core solution
can be obtained by providing five boundary conditions: two
of them at the core center, other two at the sonic point, and
the last one at the photosphere.

First, at the core center, the luminosity and enclosed
mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (11)

Therefore, we can obtain one core solution, if we give the
values of density and temperature at the core center, ρc and
Tc.

Second, the following regularity conditions should be
satisfied at the sonic point. By substituting Eqs. (5) and (8)
into Eq. (9), it is rewritten as

1
v

dv
dr
=

⎡⎢⎢⎢⎢⎣
2
r

c2
T −

1
ρ

(
∂P
∂T

)

ρ

dT
dr
− GMr

r2

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
, (12)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed. We
can see from Eq. (12) that the sonic point is the singular
point of the equation. A transonic wind solution can be
obtained by requiring that the numerator of the equation
vanishes at the sonic point and that the velocity gradient
become finite there (Lamers & Cassinelli 1999). From these

regularity conditions, we can evaluate dT/dr (so do the ra-
diative luminosity) and the wind velocity at the sonic point,
for the given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass there
with the total mass of a star, M∗, since the total mass in the
supersonic region must be much less than that. To summa-
rize, the following two boundary conditions are set at the
sonic point:

v(rs) = cT(ρs,Ts) and Lrad(rs) = Lrad(rs, ρs,Ts) at M (rs) = M∗.
(13)

It should be noted that once the values of rs, ρs, and Ts are
specified, we can obtain one wind solution. This is because,
for a given set of (rs, ρs,Ts), Ṁw and Λ can be evaluated
from Eqs. (8) and (10), respectively, and the velocity gradi-
ent at the sonic point by using the de l’Hopital rule to Eq.
(12) (Lamers & Cassinelli 1999; Nugis & Lamers 2002).

Finally, at the photospheric radius (rph), where the ef-

fective temperature Teff ≡ (Lrad/4πr2σSB)1/4 with σSB the
Stefan-Boltzman constant becomes equal to the local tem-
perature, we require that the opacity-like variable τ ≡ κρr
takes a value as close to 3 as possible (Kato & Iben 1992;
Kato & Hachisu 1994). Therefore, the boundary condition
at the photosphere are represented as

Teff = T (rph) and τ(rph) ≃ 3. (14)

The values of the five parameters, ρc, Tc, rs, ρs, and
Ts, are determined iteratively so that the wind solution is
smoothly connected to the hydrostatic core at some radius
rm between the core center and the sonic point. Here, we
choose rm at the radius where the temperature becomes
around 108 K, i.e., T (rm) ≃ 108 K. We first fix the value of
ρs and iteratively determine the values of ρc, Tc, rs, and Ts
so that the enclosed mass, density, and temperature should
be continuous, and the total luminosity should be conserved
at the matching radius rm:

Mcore(rm) = Mwind(rm),
ρcore(rm) = ρwind(rm), (15)

Tcore(rm) = Twind(rm),

Lcore(rm) = Lwind(rm)

+ Ṁw '
(
v2(rm)

2 +
5R
2µTwind(rm) +

4arad
3

T4
wind(rm)
ρwind(rm)

)
*

= Λ + Ṁw

∫ rs

rm

GMr

r2 dr . (16)

Next, ρs is determined so that the wind solution satisfies the
photospheric condition Eq. (18). Hence, we have obtained a
self-consistent W-R model.

2.4 Models

Chemical Composition

In this paper, we consider two types of W-R models, WN
models and WC models. Since we consider H-free W-R mod-
els, the mass fraction of H is set to zero, X = 0, in both mod-
els. The mass fraction of He, Y , is calculated from Y = 1− Z̃,
where Z̃ is the mass fraction of metals heavier than He. In
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2.2 Optically Thick Wind Envelope

The basic equations to construct an optically thick wind
solution are given below. Note that our formulation is valid
as long as the wind is optically thick (e.g., Żytkow 1972;
Kato & Iben 1992).

Ṁw ≡ 4πr2ρv = const., dMr

dr
= 4πr2ρ, (8)

v
dv
dr
+

1
ρ

dP
dr
+

GMr

r2 = 0, (9)

Λ ≡ Lr + Ṁw

(
v2

2 +
5RT
2µ +

4aradT4

3ρ +

∫ r

rs

GMr

r2 dr
)
= const.,

(10)

where v is the wind velocity, Ṁw the mass-loss rate, Λ the
energy constant, rs the sonic point radius. In Eq. (10), we
neglect the nuclear energy generation, since the wind tem-
perature is too low for it to become significant. It should be
noted that in the limit of Ṁw → 0 and vdv/dr → 0, Eqs. (8-
10) return to Eqs. (1-3) with ϵnuc = 0.

In the wind region, the total luminosity Lr is calcu-
lated from Eq. (4) as well. ∇rad is, however, calculated
without assuming the hydrostatic equilibrium as ∇rad =
3κLr P/(16πaradcr2T4)/(−ρ−1dP/dr) by substituting Eq. (9)
in it. Moreover, in the supersonic region, we neglect the con-
vective energy transport since the velocity of the convective
element should be less than the sound speed and it may not
exceed the energy transport by advection.

2.3 Connecting Wind Envelope to Hydrostatic
Core

In the wind region, the equations (4, 8-10) have five un-
known functions, v(r), ρ(r),T (r), Lr , and Mr , while in the
core region, the equations (1-4) have four (since v(r) = 0). A
wind solution that is smoothly connected to a core solution
can be obtained by providing five boundary conditions: two
of them at the core center, other two at the sonic point, and
the last one at the photosphere.

First, at the core center, the luminosity and enclosed
mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (11)

Therefore, we can obtain one core solution, if we give the
values of density and temperature at the core center, ρc and
Tc.

Second, the following regularity conditions should be
satisfied at the sonic point. By substituting Eqs. (5) and (8)
into Eq. (9), it is rewritten as

1
v

dv
dr
=

⎡⎢⎢⎢⎢⎣
2
r

c2
T −

1
ρ

(
∂P
∂T

)

ρ

dT
dr
− GMr

r2

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
, (12)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed. We
can see from Eq. (12) that the sonic point is the singular
point of the equation. A transonic wind solution can be
obtained by requiring that the numerator of the equation
vanishes at the sonic point and that the velocity gradient
become finite there (Lamers & Cassinelli 1999). From these

regularity conditions, we can evaluate dT/dr (so do the ra-
diative luminosity) and the wind velocity at the sonic point,
for the given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass there
with the total mass of a star, M∗, since the total mass in the
supersonic region must be much less than that. To summa-
rize, the following two boundary conditions are set at the
sonic point:

v(rs) = cT(ρs,Ts) and Lrad(rs) = Lrad(rs, ρs,Ts) at M (rs) = M∗.
(13)

It should be noted that once the values of rs, ρs, and Ts are
specified, we can obtain one wind solution. This is because,
for a given set of (rs, ρs,Ts), Ṁw and Λ can be evaluated
from Eqs. (8) and (10), respectively, and the velocity gradi-
ent at the sonic point by using the de l’Hopital rule to Eq.
(12) (Lamers & Cassinelli 1999; Nugis & Lamers 2002).

Finally, at the photospheric radius (rph), where the ef-

fective temperature Teff ≡ (Lrad/4πr2σSB)1/4 with σSB the
Stefan-Boltzman constant becomes equal to the local tem-
perature, we require that the opacity-like variable τ ≡ κρr
takes a value as close to 3 as possible (Kato & Iben 1992;
Kato & Hachisu 1994). Therefore, the boundary condition
at the photosphere are represented as

Teff = T (rph) and τ(rph) ≃ 3. (14)

The values of the five parameters, ρc, Tc, rs, ρs, and
Ts, are determined iteratively so that the wind solution is
smoothly connected to the hydrostatic core at some radius
rm between the core center and the sonic point. Here, we
choose rm at the radius where the temperature becomes
around 108 K, i.e., T (rm) ≃ 108 K. We first fix the value of
ρs and iteratively determine the values of ρc, Tc, rs, and Ts
so that the enclosed mass, density, and temperature should
be continuous, and the total luminosity should be conserved
at the matching radius rm:

Mcore(rm) = Mwind(rm),
ρcore(rm) = ρwind(rm), (15)

Tcore(rm) = Twind(rm),

Lcore(rm) = Lwind(rm)

+ Ṁw '
(
v2(rm)

2 +
5R
2µTwind(rm) +

4arad
3

T4
wind(rm)
ρwind(rm)

)
*

= Λ + Ṁw

∫ rs

rm

GMr

r2 dr . (16)

Next, ρs is determined so that the wind solution satisfies the
photospheric condition Eq. (18). Hence, we have obtained a
self-consistent W-R model.

2.4 Models

Chemical Composition

In this paper, we consider two types of W-R models, WN
models and WC models. Since we consider H-free W-R mod-
els, the mass fraction of H is set to zero, X = 0, in both mod-
els. The mass fraction of He, Y , is calculated from Y = 1− Z̃,
where Z̃ is the mass fraction of metals heavier than He. In
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2.2 Optically Thick Wind Envelope

The basic equations to construct an optically thick wind
solution are given below. Note that our formulation is valid
as long as the wind is optically thick (e.g., Żytkow 1972;
Kato & Iben 1992).

Ṁw ≡ 4πr2ρv = const., dMr

dr
= 4πr2ρ, (8)

v
dv
dr
+

1
ρ

dP
dr
+

GMr

r2 = 0, (9)

Λ ≡ Lr + Ṁw

(
v2

2 +
5RT
2µ +

4aradT4

3ρ +

∫ r

rs

GMr

r2 dr
)
= const.,

(10)

where v is the wind velocity, Ṁw the mass-loss rate, Λ the
energy constant, rs the sonic point radius. In Eq. (10), we
neglect the nuclear energy generation, since the wind tem-
perature is too low for it to become significant. It should be
noted that in the limit of Ṁw → 0 and vdv/dr → 0, Eqs. (8-
10) return to Eqs. (1-3) with ϵnuc = 0.

In the wind region, the total luminosity Lr is calcu-
lated from Eq. (4) as well. ∇rad is, however, calculated
without assuming the hydrostatic equilibrium as ∇rad =
3κLr P/(16πaradcr2T4)/(−ρ−1dP/dr) by substituting Eq. (9)
in it. Moreover, in the supersonic region, we neglect the con-
vective energy transport since the velocity of the convective
element should be less than the sound speed and it may not
exceed the energy transport by advection.

2.3 Connecting Wind Envelope to Hydrostatic
Core

In the wind region, the equations (4, 8-10) have five un-
known functions, v(r), ρ(r),T (r), Lr , and Mr , while in the
core region, the equations (1-4) have four (since v(r) = 0). A
wind solution that is smoothly connected to a core solution
can be obtained by providing five boundary conditions: two
of them at the core center, other two at the sonic point, and
the last one at the photosphere.

First, at the core center, the luminosity and enclosed
mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (11)

Therefore, we can obtain one core solution, if we give the
values of density and temperature at the core center, ρc and
Tc.

Second, the following regularity conditions should be
satisfied at the sonic point. By substituting Eqs. (5) and (8)
into Eq. (9), it is rewritten as

1
v

dv
dr
=

⎡⎢⎢⎢⎢⎣
2
r

c2
T −

1
ρ

(
∂P
∂T

)

ρ

dT
dr
− GMr

r2

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
, (12)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed. We
can see from Eq. (12) that the sonic point is the singular
point of the equation. A transonic wind solution can be
obtained by requiring that the numerator of the equation
vanishes at the sonic point and that the velocity gradient
become finite there (Lamers & Cassinelli 1999). From these

regularity conditions, we can evaluate dT/dr (so do the ra-
diative luminosity) and the wind velocity at the sonic point,
for the given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass there
with the total mass of a star, M∗, since the total mass in the
supersonic region must be much less than that. To summa-
rize, the following two boundary conditions are set at the
sonic point:

v(rs) = cT(ρs,Ts) and Lrad(rs) = Lrad(rs, ρs,Ts) at M (rs) = M∗.
(13)

It should be noted that once the values of rs, ρs, and Ts are
specified, we can obtain one wind solution. This is because,
for a given set of (rs, ρs,Ts), Ṁw and Λ can be evaluated
from Eqs. (8) and (10), respectively, and the velocity gradi-
ent at the sonic point by using the de l’Hopital rule to Eq.
(12) (Lamers & Cassinelli 1999; Nugis & Lamers 2002).

Finally, at the photospheric radius (rph), where the ef-

fective temperature Teff ≡ (Lrad/4πr2σSB)1/4 with σSB the
Stefan-Boltzman constant becomes equal to the local tem-
perature, we require that the opacity-like variable τ ≡ κρr
takes a value as close to 3 as possible (Kato & Iben 1992;
Kato & Hachisu 1994). Therefore, the boundary condition
at the photosphere are represented as

Teff = T (rph) and τ(rph) ≃ 3. (14)

The values of the five parameters, ρc, Tc, rs, ρs, and
Ts, are determined iteratively so that the wind solution is
smoothly connected to the hydrostatic core at some radius
rm between the core center and the sonic point. Here, we
choose rm at the radius where the temperature becomes
around 108 K, i.e., T (rm) ≃ 108 K. We first fix the value of
ρs and iteratively determine the values of ρc, Tc, rs, and Ts
so that the enclosed mass, density, and temperature should
be continuous, and the total luminosity should be conserved
at the matching radius rm:

Mcore(rm) = Mwind(rm),
ρcore(rm) = ρwind(rm), (15)

Tcore(rm) = Twind(rm),

Lcore(rm) = Lwind(rm)

+ Ṁw '
(
v2(rm)

2 +
5R
2µTwind(rm) +

4arad
3

T4
wind(rm)
ρwind(rm)

)
*

= Λ + Ṁw

∫ rs

rm

GMr

r2 dr . (16)

Next, ρs is determined so that the wind solution satisfies the
photospheric condition Eq. (14). Hence, we have obtained a
self-consistent W-R model.

2.4 Models

Chemical Composition

In this paper, we consider two types of W-R models, WN
models and WC models. Since we consider H-free W-R mod-
els, the mass fraction of H is set to zero, X = 0, in both mod-
els. The mass fraction of He, Y , is calculated from Y = 1− Z̃,
where Z̃ is the mass fraction of metals heavier than He. In

MNRAS 000, 1–8 (2017)

Wolf-Rayet Star Models and Wind Mass-Loss Rates 3

2.2 Optically Thick Wind Envelope

The basic equations to construct an optically thick wind
solution are given below. Note that our formulation is valid
as long as the wind is optically thick (e.g., Żytkow 1972;
Kato & Iben 1992).

Ṁw ≡ 4πr2ρv = const., dMr

dr
= 4πr2ρ, (8)

v
dv
dr
+

1
ρ

dP
dr
+

GMr

r2 = 0, (9)

Λ ≡ Lr + Ṁw

(
v2

2 +
5RT
2µ +

4aradT4

3ρ +

∫ r

rs

GMr

r2 dr
)
= const.,

(10)

where v is the wind velocity, Ṁw the mass-loss rate, Λ the
energy constant, rs the sonic point radius. In Eq. (10), we
neglect the nuclear energy generation, since the wind tem-
perature is too low for it to become significant. It should be
noted that in the limit of Ṁw → 0 and vdv/dr → 0, Eqs. (8-
10) return to Eqs. (1-3) with ϵnuc = 0.

In the wind region, the total luminosity Lr is calcu-
lated from Eq. (4) as well. ∇rad is, however, calculated
without assuming the hydrostatic equilibrium as ∇rad =
3κLr P/(16πaradcr2T4)/(−ρ−1dP/dr) by substituting Eq. (9)
in it. Moreover, in the supersonic region, we neglect the con-
vective energy transport since the velocity of the convective
element should be less than the sound speed and it may not
exceed the energy transport by advection.

2.3 Connecting Wind Envelope to Hydrostatic
Core

In the wind region, the equations (4, 8-10) have five un-
known functions, v(r), ρ(r),T (r), Lr , and Mr , while in the
core region, the equations (1-4) have four (since v(r) = 0). A
wind solution that is smoothly connected to a core solution
can be obtained by providing five boundary conditions: two
of them at the core center, other two at the sonic point, and
the last one at the photosphere.

First, at the core center, the luminosity and enclosed
mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (11)

Therefore, we can obtain one core solution, if we give the
values of density and temperature at the core center, ρc and
Tc.

Second, the following regularity conditions should be
satisfied at the sonic point. By substituting Eqs. (5) and (8)
into Eq. (9), it is rewritten as

1
v

dv
dr
=

⎡⎢⎢⎢⎢⎣
2
r

c2
T −

1
ρ

(
∂P
∂T

)

ρ

dT
dr
− GMr

r2

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
, (12)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed. We
can see from Eq. (12) that the sonic point is the singular
point of the equation. A transonic wind solution can be
obtained by requiring that the numerator of the equation
vanishes at the sonic point and that the velocity gradient
become finite there (Lamers & Cassinelli 1999). From these

regularity conditions, we can evaluate dT/dr (so do the ra-
diative luminosity) and the wind velocity at the sonic point,
for the given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass there
with the total mass of a star, M∗, since the total mass in the
supersonic region must be much less than that. To summa-
rize, the following two boundary conditions are set at the
sonic point:

v(rs) = cT(ρs,Ts) and Lrad(rs) = Lrad(rs, ρs,Ts) at M (rs) = M∗.
(13)

It should be noted that once the values of rs, ρs, and Ts are
specified, we can obtain one wind solution. This is because,
for a given set of (rs, ρs,Ts), Ṁw and Λ can be evaluated
from Eqs. (8) and (10), respectively, and the velocity gradi-
ent at the sonic point by using the de l’Hopital rule to Eq.
(12) (Lamers & Cassinelli 1999; Nugis & Lamers 2002).

Finally, at the photospheric radius (rph), where the ef-

fective temperature Teff ≡ (Lrad/4πr2σSB)1/4 with σSB the
Stefan-Boltzman constant becomes equal to the local tem-
perature, we require that the opacity-like variable τ ≡ κρr
takes a value as close to 3 as possible (Kato & Iben 1992;
Kato & Hachisu 1994). Therefore, the boundary condition
at the photosphere are represented as

Teff = T (rph) and τ(rph) ≃ 3. (14)

The values of the five parameters, ρc, Tc, rs, ρs, and
Ts, are determined iteratively so that the wind solution is
smoothly connected to the hydrostatic core at some radius
rm between the core center and the sonic point. Here, we
choose rm at the radius where the temperature becomes
around 108 K, i.e., T (rm) ≃ 108 K. We first fix the value of
ρs and iteratively determine the values of ρc, Tc, rs, and Ts
so that the enclosed mass, density, and temperature should
be continuous, and the total luminosity should be conserved
at the matching radius rm:

Mcore(rm) = Mwind(rm),
ρcore(rm) = ρwind(rm), (15)

Tcore(rm) = Twind(rm),

Lcore(rm) = Lwind(rm)

+ Ṁw '
(
v2(rm)

2 +
5R
2µTwind(rm) +

4arad
3

T4
wind(rm)
ρwind(rm)

)
*

= Λ + Ṁw

∫ rs

rm

GMr

r2 dr . (16)

Next, ρs is determined so that the wind solution satisfies the
photospheric condition Eq. (14). Hence, we have obtained a
self-consistent W-R model.

2.4 Models

Chemical Composition

In this paper, we consider two types of W-R models, WN
models and WC models. Since we consider H-free W-R mod-
els, the mass fraction of H is set to zero, X = 0, in both mod-
els. The mass fraction of He, Y , is calculated from Y = 1− Z̃,
where Z̃ is the mass fraction of metals heavier than He. In
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2.2 Optically Thick Wind Envelope

The basic equations to construct an optically thick wind
solution are given below. Note that our formulation is valid
as long as the wind is optically thick (e.g., Żytkow 1972;
Kato & Iben 1992).

Ṁw ≡ 4πr2ρv = const., dMr

dr
= 4πr2ρ, (8)

v
dv
dr
+

1
ρ

dP
dr
+

GMr

r2 = 0, (9)

Λ ≡ Lr + Ṁw

(
v2

2 +
5RT
2µ +

4aradT4

3ρ +

∫ r

rs

GMr

r2 dr
)
= const.,

(10)

where v is the wind velocity, Ṁw the mass-loss rate, Λ the
energy constant, rs the sonic point radius. In Eq. (10), we
neglect the nuclear energy generation, since the wind tem-
perature is too low for it to become significant. It should be
noted that in the limit of Ṁw → 0 and vdv/dr → 0, Eqs. (8-
10) return to Eqs. (1-3) with ϵnuc = 0.

In the wind region, the total luminosity Lr is calcu-
lated from Eq. (4) as well. ∇rad is, however, calculated
without assuming the hydrostatic equilibrium as ∇rad =
3κLr P/(16πaradcr2T4)/(−ρ−1dP/dr) by substituting Eq. (9)
in it. Moreover, in the supersonic region, we neglect the con-
vective energy transport since the velocity of the convective
element should be less than the sound speed and it may not
exceed the energy transport by advection.

2.3 Connecting Wind Envelope to Hydrostatic
Core

In the wind region, the equations (4, 8-10) have five un-
known functions, v(r), ρ(r),T (r), Lr , and Mr , while in the
core region, the equations (1-4) have four (since v(r) = 0). A
wind solution that is smoothly connected to a core solution
can be obtained by providing five boundary conditions: two
of them at the core center, other two at the sonic point, and
the last one at the photosphere.

First, at the core center, the luminosity and enclosed
mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (11)

Therefore, we can obtain one core solution, if we give the
values of density and temperature at the core center, ρc and
Tc.

Second, the following regularity conditions should be
satisfied at the sonic point. By substituting Eqs. (5) and (8)
into Eq. (9), it is rewritten as

1
v

dv
dr
=

⎡⎢⎢⎢⎢⎣
2
r

c2
T −

1
ρ

(
∂P
∂T

)

ρ

dT
dr
− GMr

r2

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
, (12)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed. We
can see from Eq. (12) that the sonic point is the singular
point of the equation. A transonic wind solution can be
obtained by requiring that the numerator of the equation
vanishes at the sonic point and that the velocity gradient
become finite there (Lamers & Cassinelli 1999). From these

regularity conditions, we can evaluate dT/dr (so do the ra-
diative luminosity) and the wind velocity at the sonic point,
for the given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass there
with the total mass of a star, M∗, since the total mass in the
supersonic region must be much less than that. To summa-
rize, the following two boundary conditions are set at the
sonic point:

v(rs) = cT(ρs,Ts) and Lrad(rs) = Lrad(rs, ρs,Ts) at M (rs) = M∗.
(13)

It should be noted that once the values of rs, ρs, and Ts are
specified, we can obtain one wind solution. This is because,
for a given set of (rs, ρs,Ts), Ṁw and Λ can be evaluated
from Eqs. (8) and (10), respectively, and the velocity gradi-
ent at the sonic point by using the de l’Hopital rule to Eq.
(12) (Lamers & Cassinelli 1999; Nugis & Lamers 2002).

Finally, at the photospheric radius (rph), where the ef-

fective temperature Teff ≡ (Lrad/4πr2σSB)1/4 with σSB the
Stefan-Boltzman constant becomes equal to the local tem-
perature, we require that the opacity-like variable τ ≡ κρr
takes a value as close to 3 as possible (Kato & Iben 1992;
Kato & Hachisu 1994). Therefore, the boundary condition
at the photosphere are represented as

Teff = T (rph) and τ(rph) ≃ 3. (14)

The values of the five parameters, ρc, Tc, rs, ρs, and
Ts, are determined iteratively so that the wind solution is
smoothly connected to the hydrostatic core at some radius
rm between the core center and the sonic point. Here, we
choose rm at the radius where the temperature becomes
around 108 K, i.e., T (rm) ≃ 108 K. We first fix the value of
ρs and iteratively determine the values of ρc, Tc, rs, and Ts
so that the enclosed mass, density, and temperature should
be continuous, and the total luminosity should be conserved
at the matching radius rm:

Mcore(rm) = Mwind(rm),
ρcore(rm) = ρwind(rm), (15)

Tcore(rm) = Twind(rm),

Lcore(rm) = Lwind(rm)

+ Ṁw '
(
v2(rm)

2 +
5R
2µTwind(rm) +

4arad
3

T4
wind(rm)
ρwind(rm)

)
*

= Λ + Ṁw

∫ rs

rm

GMr

r2 dr . (16)

Next, ρs is determined so that the wind solution satisfies the
photospheric condition Eq. (14). Hence, we have obtained a
self-consistent W-R model.

2.4 Models

Chemical Composition

In this paper, we consider two types of W-R models, WN
models and WC models. Since we consider H-free W-R mod-
els, the mass fraction of H is set to zero, X = 0, in both mod-
els. The mass fraction of He, Y , is calculated from Y = 1− Z̃,
where Z̃ is the mass fraction of metals heavier than He. In
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2.2 Optically Thick Wind Envelope

The basic equations to construct an optically thick wind
solution are given below. Note that our formulation is valid
as long as the wind is optically thick (e.g., Żytkow 1972;
Kato & Iben 1992).
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(
v2

2 +
5RT
2µ +

4aradT4

3ρ +

∫ r

rs

GMr

r2 dr
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(10)

where v is the wind velocity, Ṁw the mass-loss rate, Λ the
energy constant, rs the sonic point radius. In Eq. (10), we
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perature is too low for it to become significant. It should be
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wind solution that is smoothly connected to a core solution
can be obtained by providing five boundary conditions: two
of them at the core center, other two at the sonic point, and
the last one at the photosphere.

First, at the core center, the luminosity and enclosed
mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (11)

Therefore, we can obtain one core solution, if we give the
values of density and temperature at the core center, ρc and
Tc.

Second, the following regularity conditions should be
satisfied at the sonic point. By substituting Eqs. (5) and (8)
into Eq. (9), it is rewritten as
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where cT =
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(∂P/∂ρ)T is the isothermal sound speed. We
can see from Eq. (12) that the sonic point is the singular
point of the equation. A transonic wind solution can be
obtained by requiring that the numerator of the equation
vanishes at the sonic point and that the velocity gradient
become finite there (Lamers & Cassinelli 1999). From these

regularity conditions, we can evaluate dT/dr (so do the ra-
diative luminosity) and the wind velocity at the sonic point,
for the given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass there
with the total mass of a star, M∗, since the total mass in the
supersonic region must be much less than that. To summa-
rize, the following two boundary conditions are set at the
sonic point:

v(rs) = cT(ρs,Ts) and Lrad(rs) = Lrad(rs, ρs,Ts) at M (rs) = M∗.
(13)

It should be noted that once the values of rs, ρs, and Ts are
specified, we can obtain one wind solution. This is because,
for a given set of (rs, ρs,Ts), Ṁw and Λ can be evaluated
from Eqs. (8) and (10), respectively, and the velocity gradi-
ent at the sonic point by using the de l’Hopital rule to Eq.
(12) (Lamers & Cassinelli 1999; Nugis & Lamers 2002).

Finally, at the photospheric radius (rph), where the ef-

fective temperature Teff ≡ (Lrad/4πr2σSB)1/4 with σSB the
Stefan-Boltzman constant becomes equal to the local tem-
perature, we require that the opacity-like variable τ ≡ κρr
takes a value as close to 3 as possible (Kato & Iben 1992;
Kato & Hachisu 1994). Therefore, the boundary condition
at the photosphere are represented as

Teff = T (rph) and τ(rph) ≃ 3. (14)

The values of the five parameters, ρc, Tc, rs, ρs, and
Ts, are determined iteratively so that the wind solution is
smoothly connected to the hydrostatic core at some radius
rm between the core center and the sonic point. Here, we
choose rm at the radius where the temperature becomes
around 108 K, i.e., T (rm) ≃ 108 K. We first fix the value of
ρs and iteratively determine the values of ρc, Tc, rs, and Ts
so that the enclosed mass, density, and temperature should
be continuous, and the total luminosity should be conserved
at the matching radius rm:

Mcore(rm) = Mwind(rm),
ρcore(rm) = ρwind(rm), (15)

Tcore(rm) = Twind(rm),

Lcore(rm) = Lwind(rm)

+ Ṁw '
(
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ρwind(rm)
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= Λ + Ṁw

∫ rs
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Next, ρs is determined so that the wind solution satisfies the
photospheric condition Eq. (14). Hence, we have obtained a
self-consistent W-R model.

2.4 Models

Chemical Composition

In this paper, we consider two types of W-R models, WN
models and WC models. Since we consider H-free W-R mod-
els, the mass fraction of H is set to zero, X = 0, in both mod-
els. The mass fraction of He, Y , is calculated from Y = 1− Z̃,
where Z̃ is the mass fraction of metals heavier than He. In
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Gräfener et al. (2012) considered He-star models with
inflated envelopes to resolve the radius problem (see also
McClelland & Eldridge 2016). Inflated envelopes can de-
velop, because the density scale height increases when the
luminosity near the surface approaches the local Eddington
value owing to the opacity bump at ∼ 2 × 105 K produced
by a number of bound-bound transitions of iron nuclei 2.
The radial extent can be several times as large as the core
radius (Ishii et al. 1999; Petrovic et al. 2006). At the outer-
most layers, the luminosity becomes even super-Eddington
and the density increases with radius (the so-called density
inversion). This is because the gas pressure gradient should
be positive in order to keep hydrostatic equilibrium in the
super-Eddington layers (Joss et al. 1973).

There are some discrepancies in the envelope infla-
tion model. By using the hydrodynamic stellar evolution
code, Petrovic et al. (2006) studied the effect of the mass
loss on the inflated envelope of a He star, and found
that it is removed by the typical W-R mass loss (see also
McClelland & Eldridge 2016). Moreover, the density inver-
sion may imply the presence of a steady wind solution, if
the assumption of hydrostatic equilibrium is relaxed in these
layers. Considering that the observed W-R stars have high-
speed winds, it may be plausible to construct a W-R model
by combining a hydrostatic core with a dynamical wind en-
velope.

So far, there are some studies on this line (Kato & Iben
1992; Ro & Matzner 2016). Ro & Matzner (2016) con-
structed a series of wind solutions which are connected to
the He-star model obtained in Gräfener et al. (2012). For all
of the solutions, however, the wind velocity never reaches
and exceeds the escape velocity, since the acceleration stops
at some radius in the supersonic region. They ascribed this
discrepancy to their lack of considering the enhancement of
the line opacity by the Doppler shifting. On the other hand,
Kato & Iben (1992) obtained self-consistent W-R models by
simultaneously solving the structure of a hydrostatic core
and a dynamical wind envelope and by connecting them
smoothly. It is problematic, however, that they assumed an
artificial opacity law in order to obtain a wind envelope so-
lution whose velocity exceeds the escape velocity at the pho-
tosphere.

In this paper, we calculate a series of self-consistent W-
R models by using the formulation of Kato & Iben (1992)
and the updated opacity law. In Section 2, we show the basic
equations and the boundary conditions for the hydrostatic
core and wind envelope. We consider W-R models with var-
ious metallicities, while Kato & Iben (1992) focused only on
the solar metallicity case. We also take the effect of wind in-
homogeneity into account by introducing the clumping fac-
tor as was done in Gräfener et al. (2012), who studied its
effect on the inflated envelopes. In Section 3, we show our
results by discussing the dependence of the obtained W-
R structures on the mass, chemical composition, and wind
clumpiness. The advantage of our model is that the mass-
loss rate can be uniquely determined as a function of these
parameters. In Section 4, we derive the mass-loss rate to lu-

2 Envelope inflation and density inversion near the surface has
also been reported from the evolution calculation of massive stars
in core H burning phase (Sanyal et al. 2015).

minosity relations and find that they are consistent with the
observed W-R stars and the empirically derived formulae in
Nugis & Lamers (2000). In Section 5, after summarizing the
conclusions, we discuss the remaining problems of our study.

2 METHODS AND MODELS

2.1 Hydrostatic He Core

The basic equations to construct a hydrostatic He-burning
core are as follows (Kippenhahn et al. 2012):

dr
dP
= − r2

GMr ρ
, (1)

dMr

dP
= − 4πr4

GMr
, (2)

dLr

dP
= − 4πr4

GMr
ϵnuc, (3)

Lr = Lrad + Lconv, (4)

where G is the gravitational constant, P the total pressure,
Mr the enclosed mass within the radius r, ρ the density,
Lr the total luminosity, ϵnuc the nuclear energy generation
rate via the triple-α reaction, Lrad the radiative luminosity,
and Lconv the convective luminosity. The total pressure P is
composed of the radiation pressure Prad and the gas pressure
Pgas:

P = Pgas + Prad =
R
µ
ρT +

1
3 aradT4, (5)

where arad is the radiation constant, R the gas constant, T
the temperature, and µ the mean molecular weight. Since we
consider chemically homogeneous He stars, µ is taken as a
const throughout the core and wind envelope in this paper.
Radiative luminosity Lrad is calculated using the diffusion
approximation:

Lrad = −
16πaradcr2T3

3κρ
dT
dr
, (6)

where c is the speed of light, and κ(ρ,T ) the opacity. For κ,
we adopt the Rosseland mean opacity in tabular form pro-
vided by the OPAL project (Iglesias & Rogers 1996). Con-
vective luminosity Lconv is calculated by using the mixing-
length theory (Eggleton 1971), if the temperature gradient
satisfies the Schwarzschild criterion for the onset of convec-
tion (Kippenhahn et al. 2012):

∇rad ≥ ∇ad, (7)

where ∇ad ≡ (d log P/d logT )ad = 2(4 − 3β)/(32 − 24β −
3β2) with β ≡ Pgas/P is the adiabatic temperature
gradient for constant µ, and ∇rad ≡ d log P/d logT =

3κLr P/(16πaradcGMrT4) in the core. Otherwise, all of the
luminosity can be transported by radiation, so that Lr = Lrad
and Lconv = 0.
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Gräfener et al. (2012) considered He-star models with
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McClelland & Eldridge 2016). Inflated envelopes can de-
velop, because the density scale height increases when the
luminosity near the surface approaches the local Eddington
value owing to the opacity bump at ∼ 2 × 105 K produced
by a number of bound-bound transitions of iron nuclei 2.
The radial extent can be several times as large as the core
radius (Ishii et al. 1999; Petrovic et al. 2006). At the outer-
most layers, the luminosity becomes even super-Eddington
and the density increases with radius (the so-called density
inversion). This is because the gas pressure gradient should
be positive in order to keep hydrostatic equilibrium in the
super-Eddington layers (Joss et al. 1973).

There are some discrepancies in the envelope infla-
tion model. By using the hydrodynamic stellar evolution
code, Petrovic et al. (2006) studied the effect of the mass
loss on the inflated envelope of a He star, and found
that it is removed by the typical W-R mass loss (see also
McClelland & Eldridge 2016). Moreover, the density inver-
sion may imply the presence of a steady wind solution, if
the assumption of hydrostatic equilibrium is relaxed in these
layers. Considering that the observed W-R stars have high-
speed winds, it may be plausible to construct a W-R model
by combining a hydrostatic core with a dynamical wind en-
velope.

So far, there are some studies on this line (Kato & Iben
1992; Ro & Matzner 2016). Ro & Matzner (2016) con-
structed a series of wind solutions which are connected to
the He-star model obtained in Gräfener et al. (2012). For all
of the solutions, however, the wind velocity never reaches
and exceeds the escape velocity, since the acceleration stops
at some radius in the supersonic region. They ascribed this
discrepancy to their lack of considering the enhancement of
the line opacity by the Doppler shifting. On the other hand,
Kato & Iben (1992) obtained self-consistent W-R models by
simultaneously solving the structure of a hydrostatic core
and a dynamical wind envelope and by connecting them
smoothly. It is problematic, however, that they assumed an
artificial opacity law in order to obtain a wind envelope so-
lution whose velocity exceeds the escape velocity at the pho-
tosphere.

In this paper, we calculate a series of self-consistent W-
R models by using the formulation of Kato & Iben (1992)
and the updated opacity law. In Section 2, we show the basic
equations and the boundary conditions for the hydrostatic
core and wind envelope. We consider W-R models with var-
ious metallicities, while Kato & Iben (1992) focused only on
the solar metallicity case. We also take the effect of wind in-
homogeneity into account by introducing the clumping fac-
tor as was done in Gräfener et al. (2012), who studied its
effect on the inflated envelopes. In Section 3, we show our
results by discussing the dependence of the obtained W-
R structures on the mass, chemical composition, and wind
clumpiness. The advantage of our model is that the mass-
loss rate can be uniquely determined as a function of these
parameters. In Section 4, we derive the mass-loss rate to lu-

2 Envelope inflation and density inversion near the surface has
also been reported from the evolution calculation of massive stars
in core H burning phase (Sanyal et al. 2015).

minosity relations and find that they are consistent with the
observed W-R stars and the empirically derived formulae in
Nugis & Lamers (2000). In Section 5, after summarizing the
conclusions, we discuss the remaining problems of our study.

2 METHODS AND MODELS

2.1 Hydrostatic He Core

The basic equations to construct a hydrostatic He-burning
core are as follows (Kippenhahn et al. 2012):
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GMr
ϵnuc, (3)
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where G is the gravitational constant, P the total pressure,
Mr the enclosed mass within the radius r, ρ the density,
Lr the total luminosity, ϵnuc the nuclear energy generation
rate via the triple-α reaction, Lrad the radiative luminosity,
and Lconv the convective luminosity. The total pressure P is
composed of the radiation pressure Prad and the gas pressure
Pgas:

P = Pgas + Prad =
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µ
ρT +
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3 aradT4, (5)

where arad is the radiation constant, R the gas constant, T
the temperature, and µ the mean molecular weight. Since we
consider chemically homogeneous He stars, µ is taken as a
const throughout the core and wind envelope in this paper.
Radiative luminosity Lrad is calculated using the diffusion
approximation:

Lrad = −
16πaradcr2T3

3κρ
dT
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, (6)

where c is the speed of light, and κ(ρ,T ) the opacity. For κ,
we adopt the Rosseland mean opacity in tabular form pro-
vided by the OPAL project (Iglesias & Rogers 1996). Con-
vective luminosity Lconv is calculated by using the mixing-
length theory (Eggleton 1971), if the temperature gradient
satisfies the Schwarzschild criterion for the onset of convec-
tion (Kippenhahn et al. 2012):

∇rad ≥ ∇ad, (7)

where ∇ad ≡ (d log P/d logT )ad = 2(4 − 3β)/(32 − 24β −
3β2) with β ≡ Pgas/P is the adiabatic temperature
gradient for constant µ, and ∇rad ≡ d log P/d logT =

3κLr P/(16πaradcGMrT4) in the core. Otherwise, all of the
luminosity can be transported by radiation, so that Lr = Lrad
and Lconv = 0.
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Gräfener et al. (2012) considered He-star models with
inflated envelopes to resolve the radius problem (see also
McClelland & Eldridge 2016). Inflated envelopes can de-
velop, because the density scale height increases when the
luminosity near the surface approaches the local Eddington
value owing to the opacity bump at ∼ 2 × 105 K produced
by a number of bound-bound transitions of iron nuclei 2.
The radial extent can be several times as large as the core
radius (Ishii et al. 1999; Petrovic et al. 2006). At the outer-
most layers, the luminosity becomes even super-Eddington
and the density increases with radius (the so-called density
inversion). This is because the gas pressure gradient should
be positive in order to keep hydrostatic equilibrium in the
super-Eddington layers (Joss et al. 1973).

There are some discrepancies in the envelope infla-
tion model. By using the hydrodynamic stellar evolution
code, Petrovic et al. (2006) studied the effect of the mass
loss on the inflated envelope of a He star, and found
that it is removed by the typical W-R mass loss (see also
McClelland & Eldridge 2016). Moreover, the density inver-
sion may imply the presence of a steady wind solution, if
the assumption of hydrostatic equilibrium is relaxed in these
layers. Considering that the observed W-R stars have high-
speed winds, it may be plausible to construct a W-R model
by combining a hydrostatic core with a dynamical wind en-
velope.

So far, there are some studies on this line (Kato & Iben
1992; Ro & Matzner 2016). Ro & Matzner (2016) con-
structed a series of wind solutions which are connected to
the He-star model obtained in Gräfener et al. (2012). For all
of the solutions, however, the wind velocity never reaches
and exceeds the escape velocity, since the acceleration stops
at some radius in the supersonic region. They ascribed this
discrepancy to their lack of considering the enhancement of
the line opacity by the Doppler shifting. On the other hand,
Kato & Iben (1992) obtained self-consistent W-R models by
simultaneously solving the structure of a hydrostatic core
and a dynamical wind envelope and by connecting them
smoothly. It is problematic, however, that they assumed an
artificial opacity law in order to obtain a wind envelope so-
lution whose velocity exceeds the escape velocity at the pho-
tosphere.

In this paper, we calculate a series of self-consistent W-
R models by using the formulation of Kato & Iben (1992)
and the updated opacity law. In Section 2, we show the basic
equations and the boundary conditions for the hydrostatic
core and wind envelope. We consider W-R models with var-
ious metallicities, while Kato & Iben (1992) focused only on
the solar metallicity case. We also take the effect of wind in-
homogeneity into account by introducing the clumping fac-
tor as was done in Gräfener et al. (2012), who studied its
effect on the inflated envelopes. In Section 3, we show our
results by discussing the dependence of the obtained W-
R structures on the mass, chemical composition, and wind
clumpiness. The advantage of our model is that the mass-
loss rate can be uniquely determined as a function of these
parameters. In Section 4, we derive the mass-loss rate to lu-

2 Envelope inflation and density inversion near the surface has
also been reported from the evolution calculation of massive stars
in core H burning phase (Sanyal et al. 2015).

minosity relations and find that they are consistent with the
observed W-R stars and the empirically derived formulae in
Nugis & Lamers (2000). In Section 5, after summarizing the
conclusions, we discuss the remaining problems of our study.

2 METHODS AND MODELS

2.1 Hydrostatic He Core

The basic equations to construct a hydrostatic He-burning
core are as follows (Kippenhahn et al. 2012):

dr
dP
= − r2

GMr ρ
, (1)

dMr

dP
= − 4πr4

GMr
, (2)

dLr

dP
= − 4πr4

GMr
ϵnuc, (3)

Lr = Lrad + Lconv, (4)

where G is the gravitational constant, P the total pressure,
Mr the enclosed mass within the radius r, ρ the density,
Lr the total luminosity, ϵnuc the nuclear energy generation
rate via the triple-α reaction, Lrad the radiative luminosity,
and Lconv the convective luminosity. The total pressure P is
composed of the radiation pressure Prad and the gas pressure
Pgas:

P = Pgas + Prad =
R
µ
ρT +

1
3 aradT4, (5)

where arad is the radiation constant, R the gas constant, T
the temperature, and µ the mean molecular weight. Since we
consider chemically homogeneous He stars, µ is taken as a
const throughout the core and wind envelope in this paper.
Radiative luminosity Lrad is calculated using the diffusion
approximation:

Lrad = −
16πaradcr2T3

3κρ
dT
dr
, (6)

where c is the speed of light, and κ(ρ,T ) the opacity. For κ,
we adopt the Rosseland mean opacity in tabular form pro-
vided by the OPAL project (Iglesias & Rogers 1996). Con-
vective luminosity Lconv is calculated by using the mixing-
length theory (Eggleton 1971), if the temperature gradient
satisfies the Schwarzschild criterion for the onset of convec-
tion (Kippenhahn et al. 2012):

∇rad ≥ ∇ad, (7)

where ∇ad ≡ (d log P/d logT )ad = 2(4 − 3β)/(32 − 24β −
3β2) with β ≡ Pgas/P is the adiabatic temperature
gradient for constant µ, and ∇rad ≡ d log P/d logT =

3κLr P/(16πaradcGMrT4) in the core. Otherwise, all of the
luminosity can be transported by radiation, so that Lr = Lrad
and Lconv = 0.
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2.2 Optically Thick Wind Envelope

The basic equations to construct an optically thick wind
solution are given below. Note that our formulation is valid
as long as the wind is optically thick (e.g., Żytkow 1972;
Kato & Iben 1992).

Ṁw ≡ 4πr2ρv = const., dMr

dr
= 4πr2ρ, (8)

v
dv
dr
+

1
ρ

dP
dr
+

GMr

r2 = 0, (9)

Λ ≡ Lr + Ṁw

(
v2

2 +
5RT
2µ +

4aradT4

3ρ +

∫ r

rs

GMr

r2 dr
)
= const.,

(10)

where v is the wind velocity, Ṁw the mass-loss rate, Λ the
energy constant, rs the sonic point radius. In Eq. (10), we
neglect the nuclear energy generation, since the wind tem-
perature is too low for it to become significant. It should be
noted that in the limit of Ṁw → 0 and vdv/dr → 0, Eqs. (8-
10) return to Eqs. (1-3) with ϵnuc = 0.

In the wind region, the total luminosity Lr is calcu-
lated from Eq. (4) as well. ∇rad is, however, calculated
without assuming the hydrostatic equilibrium as ∇rad =
3κLr P/(16πaradcr2T4)/(−ρ−1dP/dr) by substituting Eq. (9)
in it. Moreover, in the supersonic region, we neglect the con-
vective energy transport since the velocity of the convective
element should be less than the sound speed and it may not
exceed the energy transport by advection.

2.3 Connecting Wind Envelope to Hydrostatic
Core

In the wind region, the equations (4, 8-10) have five un-
known functions, v(r), ρ(r),T (r), Lr , and Mr , while in the
core region, the equations (1-4) have four (since v(r) = 0). A
wind solution that is smoothly connected to a core solution
can be obtained by providing five boundary conditions: two
of them at the core center, other two at the sonic point, and
the last one at the photosphere.

First, at the core center, the luminosity and enclosed
mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (11)

Therefore, we can obtain one core solution, if we give the
values of density and temperature at the core center, ρc and
Tc.

Second, the following regularity conditions should be
satisfied at the sonic point. By substituting Eqs. (5) and (8)
into Eq. (9), it is rewritten as

1
v

dv
dr
=

⎡⎢⎢⎢⎢⎣
2
r

c2
T −

1
ρ

(
∂P
∂T

)

ρ

dT
dr
− GMr

r2

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
, (12)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed. We
can see from Eq. (12) that the sonic point is the singular
point of the equation. A transonic wind solution can be
obtained by requiring that the numerator of the equation
vanishes at the sonic point and that the velocity gradient
become finite there (Lamers & Cassinelli 1999). From these

regularity conditions, we can evaluate dT/dr (so do the ra-
diative luminosity) and the wind velocity at the sonic point,
for the given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass there
with the total mass of a star, M∗, since the total mass in the
supersonic region must be much less than that. To summa-
rize, the following two boundary conditions are set at the
sonic point:

v(rs) = cT(ρs,Ts) and Lrad(rs) = Lrad(rs, ρs,Ts) at M (rs) = M∗.
(13)

It should be noted that once the values of rs, ρs, and Ts are
specified, we can obtain one wind solution. This is because,
for a given set of (rs, ρs,Ts), Ṁw and Λ can be evaluated
from Eqs. (8) and (10), respectively, and the velocity gradi-
ent at the sonic point by using the de l’Hopital rule to Eq.
(12) (Lamers & Cassinelli 1999; Nugis & Lamers 2002).

Finally, at the photospheric radius (rph), where the ef-

fective temperature Teff ≡ (Lrad/4πr2σSB)1/4 with σSB the
Stefan-Boltzman constant becomes equal to the local tem-
perature, we require that the opacity-like variable τ ≡ κρr
takes a value as close to 3 as possible (Kato & Iben 1992;
Kato & Hachisu 1994). Therefore, the boundary condition
at the photosphere are represented as

Teff = T (rph) and τ(rph) ≃ 3. (14)

The values of the five parameters, ρc, Tc, rs, ρs, and
Ts, are determined iteratively so that the wind solution is
smoothly connected to the hydrostatic core at some radius
rm between the core center and the sonic point. Here, we
choose rm at the radius where the temperature becomes
around 108 K, i.e., T (rm) ≃ 108 K. We first fix the value of
ρs and iteratively determine the values of ρc, Tc, rs, and Ts
so that the enclosed mass, density, and temperature should
be continuous, and the total luminosity should be conserved
at the matching radius rm:

Mcore(rm) = Mwind(rm),
ρcore(rm) = ρwind(rm), (15)

Tcore(rm) = Twind(rm),

Lcore(rm) = Lwind(rm)

+ Ṁw '
(
v2(rm)

2 +
5R
2µTwind(rm) +

4arad
3

T4
wind(rm)
ρwind(rm)

)
*

= Λ + Ṁw

∫ rs

rm

GMr

r2 dr . (16)

Next, ρs is determined so that the wind solution satisfies the
photospheric condition Eq. (18). Hence, we have obtained a
self-consistent W-R model.

2.4 Models

Chemical Composition

In this paper, we consider two types of W-R models, WN
models and WC models. Since we consider H-free W-R mod-
els, the mass fraction of H is set to zero, X = 0, in both mod-
els. The mass fraction of He, Y , is calculated from Y = 1− Z̃,
where Z̃ is the mass fraction of metals heavier than He. In
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2.2 Optically Thick Wind Envelope

The basic equations to construct an optically thick wind
solution are given below. Note that our formulation is valid
as long as the wind is optically thick (e.g., Żytkow 1972;
Kato & Iben 1992).

Ṁw ≡ 4πr2ρv = const., dMr

dr
= 4πr2ρ, (8)

v
dv
dr
+

1
ρ

dP
dr
+

GMr

r2 = 0, (9)

Λ ≡ Lr + Ṁw

(
v2

2 +
5RT
2µ +

4aradT4

3ρ +

∫ r

rs

GMr

r2 dr
)
= const.,

(10)

where v is the wind velocity, Ṁw the mass-loss rate, Λ the
energy constant, rs the sonic point radius. In Eq. (10), we
neglect the nuclear energy generation, since the wind tem-
perature is too low for it to become significant. It should be
noted that in the limit of Ṁw → 0 and vdv/dr → 0, Eqs. (8-
10) return to Eqs. (1-3) with ϵnuc = 0.

In the wind region, the total luminosity Lr is calcu-
lated from Eq. (4) as well. ∇rad is, however, calculated
without assuming the hydrostatic equilibrium as ∇rad =
3κLr P/(16πaradcr2T4)/(−ρ−1dP/dr) by substituting Eq. (9)
in it. Moreover, in the supersonic region, we neglect the con-
vective energy transport since the velocity of the convective
element should be less than the sound speed and it may not
exceed the energy transport by advection.

2.3 Connecting Wind Envelope to Hydrostatic
Core

In the wind region, the equations (4, 8-10) have five un-
known functions, v(r), ρ(r),T (r), Lr , and Mr , while in the
core region, the equations (1-4) have four (since v(r) = 0). A
wind solution that is smoothly connected to a core solution
can be obtained by providing five boundary conditions: two
of them at the core center, other two at the sonic point, and
the last one at the photosphere.

First, at the core center, the luminosity and enclosed
mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (11)

Therefore, we can obtain one core solution, if we give the
values of density and temperature at the core center, ρc and
Tc.

Second, the following regularity conditions should be
satisfied at the sonic point. By substituting Eqs. (5) and (8)
into Eq. (9), it is rewritten as

1
v

dv
dr
=

⎡⎢⎢⎢⎢⎣
2
r

c2
T −

1
ρ

(
∂P
∂T

)

ρ

dT
dr
− GMr

r2

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
, (12)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed. We
can see from Eq. (12) that the sonic point is the singular
point of the equation. A transonic wind solution can be
obtained by requiring that the numerator of the equation
vanishes at the sonic point and that the velocity gradient
become finite there (Lamers & Cassinelli 1999). From these

regularity conditions, we can evaluate dT/dr (so do the ra-
diative luminosity) and the wind velocity at the sonic point,
for the given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass there
with the total mass of a star, M∗, since the total mass in the
supersonic region must be much less than that. To summa-
rize, the following two boundary conditions are set at the
sonic point:

v(rs) = cT(ρs,Ts) and Lrad(rs) = Lrad(rs, ρs,Ts) at M (rs) = M∗.
(13)

It should be noted that once the values of rs, ρs, and Ts are
specified, we can obtain one wind solution. This is because,
for a given set of (rs, ρs,Ts), Ṁw and Λ can be evaluated
from Eqs. (8) and (10), respectively, and the velocity gradi-
ent at the sonic point by using the de l’Hopital rule to Eq.
(12) (Lamers & Cassinelli 1999; Nugis & Lamers 2002).

Finally, at the photospheric radius (rph), where the ef-

fective temperature Teff ≡ (Lrad/4πr2σSB)1/4 with σSB the
Stefan-Boltzman constant becomes equal to the local tem-
perature, we require that the opacity-like variable τ ≡ κρr
takes a value as close to 3 as possible (Kato & Iben 1992;
Kato & Hachisu 1994). Therefore, the boundary condition
at the photosphere are represented as

Teff = T (rph) and τ(rph) ≃ 3. (14)

The values of the five parameters, ρc, Tc, rs, ρs, and
Ts, are determined iteratively so that the wind solution is
smoothly connected to the hydrostatic core at some radius
rm between the core center and the sonic point. Here, we
choose rm at the radius where the temperature becomes
around 108 K, i.e., T (rm) ≃ 108 K. We first fix the value of
ρs and iteratively determine the values of ρc, Tc, rs, and Ts
so that the enclosed mass, density, and temperature should
be continuous, and the total luminosity should be conserved
at the matching radius rm:

Mcore(rm) = Mwind(rm),
ρcore(rm) = ρwind(rm), (15)

Tcore(rm) = Twind(rm),

Lcore(rm) = Lwind(rm)

+ Ṁw '
(
v2(rm)

2 +
5R
2µTwind(rm) +

4arad
3

T4
wind(rm)
ρwind(rm)

)
*

= Λ + Ṁw

∫ rs

rm

GMr

r2 dr . (16)

Next, ρs is determined so that the wind solution satisfies the
photospheric condition Eq. (18). Hence, we have obtained a
self-consistent W-R model.

2.4 Models

Chemical Composition

In this paper, we consider two types of W-R models, WN
models and WC models. Since we consider H-free W-R mod-
els, the mass fraction of H is set to zero, X = 0, in both mod-
els. The mass fraction of He, Y , is calculated from Y = 1− Z̃,
where Z̃ is the mass fraction of metals heavier than He. In
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WN models, we suppose that Z̃ is identical with the metal-
licity Z in solar composition (Grevesse & Noels 1993), while
in WC models, the mass fractions of C and O are enhanced
by dXC = 0.4 and dXO = 0.1, i.e., Z̃ = Z + dXC + dXO. In each
model, we consider three different metallicities of Z = 1, 2,
and 4 Z⊙ with Z⊙ = 0.02 the solar metallicity.

Wind Clumping

According to the detailed modeling of WR atmo-
sphere with radiation hydrodynamics, wind clumping
is considered to be indispensable for reproducing the
SED (Hamann & Koesterke 1998). We include this effect
by mimicking the functional form used in Hillier & Miller
(1999). The clump is optically thin and its volume filling
factor fV is

fV(r) = D−1 + (1 − D−1) exp
(
− v(r) − vcl

vcl

)
, v(r) ≥ vcl. (17)

where D is the clumping factor and we fix vcl = 200 km s−1 in
this paper (Hillier & Miller 1999). At v(r) ≥ vcl, the opacity
is modified as κ(ρ,T ) → κ(ρ/ fV,T ) (Gräfener et al. 2012).

We also consider the case of vcl = 1.1v(rs) ≃ v(rs). In this
case, wind clumping and the opacity enhancement become
effective in the entire supersonic region.

T (105 K)

Teff = T (rph) τ(rph) = 3 vcl ≃ v(rs) D = 100 ρcl = fclρ (18)

dLr

dr
= 4πr2ρϵnuc, (19)

3 RESULTS

3.1 WN Models without Wind Clumping

First, we show the stellar structure of a WN model with
M∗ = 48 M⊙, Z = 1 Z⊙, and D = 1 (Figure 1). In this model,
the matching point and the sonic point (filled circle) are lo-
cated at rm ≃ 1 R⊙ and rs ≃ 2.5 R⊙, respectively. While the
wind velocity is sufficiently subsonic (v ! 1 cm s−1) around
the matching radius, it is steeply accelerated to a supersonic
speed at the sonic radius (panel a). It finally reaches a con-
stant speed of v∞ ∼ 8 × 107 cm s−1, which is smaller than
the observed wind velocity of WN stars by a factor of a
few (Hamann et al. 2006). In our formulation, the mass-loss
rate is determined uniquely as an eigenvalue of the equa-
tions. In this model, we find Ṁw ≃ 10−4 M⊙ yr−1, which
corresponds to the high end of the observed mass-loss rates.

The density and temperature profiles show rapid decline
around rs (panels b and c). In the supersonic region, density
decreases inversely proportional to the square of radius, ρ ∝
r−2, since the wind velocity is almost constant there. We find
that the radiation pressure dominates the gas pressure over
the supersonic region, while they are almost the same order
of magnitude in the hydrostatic core and subsonic wind.

The luminosity is almost constant (Lph ≃ 1.7 × 106 L⊙)
throughout the wind envelope (panel d). According to the
mass-luminosity relation obtained from the hydrostatic W-R
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Figure 1. Stellar structures of a WN model with M∗ = 48 M⊙,
Z = 1 Z⊙, and D = 1. In each panel, the filled circle shows the
location of the sonic point. Panel a): The velocity structure of
the wind. The purple line shows the wind velocity, the green
line isothermal sound speed, and the grey-shaded region where
v(r ) ≥ vesc (r ) holds. Panel b): The density profile. Panel c): The
temperature profile. Panel d): The luminosity structure. The pur-
ple line shows the total luminosity and the green one the local
Eddington luminosity.
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Figure 2. The opacity structure in the wind envelope of the WN
model with M∗ = 48 M⊙, Z = 1 Z⊙, and D = 1.

models (Langer 1989; Schaerer & Maeder 1992):

log
(

L∗
L⊙

)
= 3.03 + 2.70 log

(
M∗
M⊙

)
− 0.46

(
log

(
M∗
M⊙

))2
, (20)

the stellar luminosity is evaluated as L∗ ≃ 1.85×106 L⊙ with
M∗ = 48 M⊙, which is consistent with our result.

For wind acceleration, the presence of the super-
Eddington layer becomes a key. While the luminosity is
sub-Eddington in the subsonic region, it turns into super-
Eddington beyond the sonic point. At r ∼ 4 R⊙, however, it
returns to sub-Eddington again. Around this point, the wind
acceleration stops and the wind velocity begins to decrease
gradually. The super-Eddington layer is induced by the iron
opacity bump at T ≃ 2 × 105 K, which can be confirmed
from Figure 2. We find that wind acceleration is initiated
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Gräfener et al. (2012) considered He-star models with
inflated envelopes to resolve the radius problem (see also
McClelland & Eldridge 2016). Inflated envelopes can de-
velop, because the density scale height increases when the
luminosity near the surface approaches the local Eddington
value owing to the opacity bump at ∼ 2 × 105 K produced
by a number of bound-bound transitions of iron nuclei 2.
The radial extent can be several times as large as the core
radius (Ishii et al. 1999; Petrovic et al. 2006). At the outer-
most layers, the luminosity becomes even super-Eddington
and the density increases with radius (the so-called density
inversion). This is because the gas pressure gradient should
be positive in order to keep hydrostatic equilibrium in the
super-Eddington layers (Joss et al. 1973).

There are some discrepancies in the envelope infla-
tion model. By using the hydrodynamic stellar evolution
code, Petrovic et al. (2006) studied the effect of the mass
loss on the inflated envelope of a He star, and found
that it is removed by the typical W-R mass loss (see also
McClelland & Eldridge 2016). Moreover, the density inver-
sion may imply the presence of a steady wind solution, if
the assumption of hydrostatic equilibrium is relaxed in these
layers. Considering that the observed W-R stars have high-
speed winds, it may be plausible to construct a W-R model
by combining a hydrostatic core with a dynamical wind en-
velope.

So far, there are some studies on this line (Kato & Iben
1992; Ro & Matzner 2016). Ro & Matzner (2016) con-
structed a series of wind solutions which are connected to
the He-star model obtained in Gräfener et al. (2012). For all
of the solutions, however, the wind velocity never reaches
and exceeds the escape velocity, since the acceleration stops
at some radius in the supersonic region. They ascribed this
discrepancy to their lack of considering the enhancement of
the line opacity by the Doppler shifting. On the other hand,
Kato & Iben (1992) obtained self-consistent W-R models by
simultaneously solving the structure of a hydrostatic core
and a dynamical wind envelope and by connecting them
smoothly. It is problematic, however, that they assumed an
artificial opacity law in order to obtain a wind envelope so-
lution whose velocity exceeds the escape velocity at the pho-
tosphere.

In this paper, we calculate a series of self-consistent W-
R models by using the formulation of Kato & Iben (1992)
and the updated opacity law. In Section 2, we show the basic
equations and the boundary conditions for the hydrostatic
core and wind envelope. We consider W-R models with var-
ious metallicities, while Kato & Iben (1992) focused only on
the solar metallicity case. We also take the effect of wind in-
homogeneity into account by introducing the clumping fac-
tor as was done in Gräfener et al. (2012), who studied its
effect on the inflated envelopes. In Section 3, we show our
results by discussing the dependence of the obtained W-
R structures on the mass, chemical composition, and wind
clumpiness. The advantage of our model is that the mass-
loss rate can be uniquely determined as a function of these
parameters. In Section 4, we derive the mass-loss rate to lu-

2 Envelope inflation and density inversion near the surface has
also been reported from the evolution calculation of massive stars
in core H burning phase (Sanyal et al. 2015).

minosity relations and find that they are consistent with the
observed W-R stars and the empirically derived formulae in
Nugis & Lamers (2000). In Section 5, after summarizing the
conclusions, we discuss the remaining problems of our study.

2 METHODS AND MODELS

2.1 Hydrostatic He Core

The basic equations to construct a hydrostatic He-burning
core are as follows (Kippenhahn et al. 2012):

dr
dP
= − r2

GMr ρ
, (1)

dMr

dP
= − 4πr4

GMr
, (2)

dLr

dP
= − 4πr4

GMr
ϵnuc, (3)

Lr = Lrad + Lconv, (4)

where G is the gravitational constant, P the total pressure,
Mr the enclosed mass within the radius r, ρ the density,
Lr the total luminosity, ϵnuc the nuclear energy generation
rate via the triple-α reaction, Lrad the radiative luminosity,
and Lconv the convective luminosity. The total pressure P is
composed of the radiation pressure Prad and the gas pressure
Pgas:

P = Pgas + Prad =
R
µ
ρT +

1
3 aradT4, (5)

where arad is the radiation constant, R the gas constant, T
the temperature, and µ the mean molecular weight. Since we
consider chemically homogeneous He stars, µ is taken as a
const throughout the core and wind envelope in this paper.
Radiative luminosity Lrad is calculated using the diffusion
approximation:

Lrad = −
16πaradcr2T3

3κρ
dT
dr
, (6)

where c is the speed of light, and κ(ρ,T ) the opacity. For κ,
we adopt the Rosseland mean opacity in tabular form pro-
vided by the OPAL project (Iglesias & Rogers 1996). Con-
vective luminosity Lconv is calculated by using the mixing-
length theory (Eggleton 1971), if the temperature gradient
satisfies the Schwarzschild criterion for the onset of convec-
tion (Kippenhahn et al. 2012):

∇rad ≥ ∇ad, (7)

where ∇ad ≡ (d log P/d logT )ad = 2(4 − 3β)/(32 − 24β −
3β2) with β ≡ Pgas/P is the adiabatic temperature
gradient for constant µ, and ∇rad ≡ d log P/d logT =

3κLr P/(16πaradcGMrT4) in the core. Otherwise, all of the
luminosity can be transported by radiation, so that Lr = Lrad
and Lconv = 0.
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3) 定常の条件はよいかどうか？ Mbelow/Ṁw > Mup/Ṁw を満たすか？ ここで，
Mbelow(Mup)は r∗ ≤ r ≤ rc (rc ≤ r ≤ rph)に含まれる質量．定常流ならば，r < rcの
部分は物質流の供給源であって欲しい．

1.2 Boundary Conditions

Eq. (6)の特異点で満たされるべき条件は，

v2c −
R
µ
Tc = 0, (7)

T ′
c =

(
2Tc

rc
− GM

r2c

µ

R

)
/(1 + B), B =

4a

3

µ

R
T 3
c

ρc
(8)

ここで，T ′
c ≡ dT

dr

∣∣
c
.

Tc, rc, ρcを与えると，特異点での条件により vc, T ′
cが評価できる．また，Eqs. (??),

(3)より Ṁw and Λが評価できる．

Λ

Ṁw

=
R
µ
Tc(3 + B)− R

µ

T ′
c

C
− GM

rc
(9)

ここで，C ≡ Ṁw
4π

R
µ

1
r2cDc

. これにより，臨界点から内外方向に数値的に積分が行える．

2

Wind 
Envelope

He 
Core

sonic 
point

Wolf-Rayet Star Models and Wind Mass-Loss Rates 3

2.2 Optically Thick Wind Envelope

The basic equations to construct an optically thick wind
solution are given below. Note that our formulation is valid
as long as the wind is optically thick (e.g., Żytkow 1972;
Kato & Iben 1992).

Ṁw ≡ 4πr2ρv = const., dMr

dr
= 4πr2ρ, (8)

v
dv
dr
+

1
ρ

dP
dr
+

GMr

r2 = 0, (9)

Λ ≡ Lr + Ṁw

(
v2

2 +
5RT
2µ +

4aradT4

3ρ +

∫ r

rs

GMr

r2 dr
)
= const.,

(10)

where v is the wind velocity, Ṁw the mass-loss rate, Λ the
energy constant, rs the sonic point radius. In Eq. (10), we
neglect the nuclear energy generation, since the wind tem-
perature is too low for it to become significant. It should be
noted that in the limit of Ṁw → 0 and vdv/dr → 0, Eqs. (8-
10) return to Eqs. (1-3) with ϵnuc = 0.

In the wind region, the total luminosity Lr is calcu-
lated from Eq. (4) as well. ∇rad is, however, calculated
without assuming the hydrostatic equilibrium as ∇rad =
3κLr P/(16πaradcr2T4)/(−ρ−1dP/dr) by substituting Eq. (9)
in it. Moreover, in the supersonic region, we neglect the con-
vective energy transport since the velocity of the convective
element should be less than the sound speed and it may not
exceed the energy transport by advection.

2.3 Connecting Wind Envelope to Hydrostatic
Core

In the wind region, the equations (4, 8-10) have five un-
known functions, v(r), ρ(r),T (r), Lr , and Mr , while in the
core region, the equations (1-4) have four (since v(r) = 0). A
wind solution that is smoothly connected to a core solution
can be obtained by providing five boundary conditions: two
of them at the core center, other two at the sonic point, and
the last one at the photosphere.

First, at the core center, the luminosity and enclosed
mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (11)

Therefore, we can obtain one core solution, if we give the
values of density and temperature at the core center, ρc and
Tc.

Second, the following regularity conditions should be
satisfied at the sonic point. By substituting Eqs. (5) and (8)
into Eq. (9), it is rewritten as

1
v

dv
dr
=

⎡⎢⎢⎢⎢⎣
2
r

c2
T −

1
ρ

(
∂P
∂T

)

ρ

dT
dr
− GMr

r2

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
, (12)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed. We
can see from Eq. (12) that the sonic point is the singular
point of the equation. A transonic wind solution can be
obtained by requiring that the numerator of the equation
vanishes at the sonic point and that the velocity gradient
become finite there (Lamers & Cassinelli 1999). From these

regularity conditions, we can evaluate dT/dr (so do the ra-
diative luminosity) and the wind velocity at the sonic point,
for the given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass there
with the total mass of a star, M∗, since the total mass in the
supersonic region must be much less than that. To summa-
rize, the following two boundary conditions are set at the
sonic point:

v(rs) = cT(ρs,Ts) and Lrad(rs) = Lrad(rs, ρs,Ts) at M (rs) = M∗.
(13)

It should be noted that once the values of rs, ρs, and Ts are
specified, we can obtain one wind solution. This is because,
for a given set of (rs, ρs,Ts), Ṁw and Λ can be evaluated
from Eqs. (8) and (10), respectively, and the velocity gradi-
ent at the sonic point by using the de l’Hopital rule to Eq.
(12) (Lamers & Cassinelli 1999; Nugis & Lamers 2002).

Finally, at the photospheric radius (rph), where the ef-

fective temperature Teff ≡ (Lrad/4πr2σSB)1/4 with σSB the
Stefan-Boltzman constant becomes equal to the local tem-
perature, we require that the opacity-like variable τ ≡ κρr
takes a value as close to 3 as possible (Kato & Iben 1992;
Kato & Hachisu 1994). Therefore, the boundary condition
at the photosphere are represented as

Teff = T (rph) and τ(rph) ≃ 3. (14)

The values of the five parameters, ρc, Tc, rs, ρs, and
Ts, are determined iteratively so that the wind solution is
smoothly connected to the hydrostatic core at some radius
rm between the core center and the sonic point. Here, we
choose rm at the radius where the temperature becomes
around 108 K, i.e., T (rm) ≃ 108 K. We first fix the value of
ρs and iteratively determine the values of ρc, Tc, rs, and Ts
so that the enclosed mass, density, and temperature should
be continuous, and the total luminosity should be conserved
at the matching radius rm:

Mcore(rm) = Mwind(rm),
ρcore(rm) = ρwind(rm), (15)

Tcore(rm) = Twind(rm),

Lcore(rm) = Lwind(rm)

+ Ṁw '
(
v2(rm)

2 +
5R
2µTwind(rm) +

4arad
3

T4
wind(rm)
ρwind(rm)

)
*

= Λ + Ṁw

∫ rs

rm

GMr

r2 dr . (16)

Next, ρs is determined so that the wind solution satisfies the
photospheric condition Eq. (18). Hence, we have obtained a
self-consistent W-R model.

2.4 Models

Chemical Composition

In this paper, we consider two types of W-R models, WN
models and WC models. Since we consider H-free W-R mod-
els, the mass fraction of H is set to zero, X = 0, in both mod-
els. The mass fraction of He, Y , is calculated from Y = 1− Z̃,
where Z̃ is the mass fraction of metals heavier than He. In
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2.2 Optically Thick Wind Envelope

The basic equations to construct an optically thick wind
solution are given below. Note that our formulation is valid
as long as the wind is optically thick (e.g., Żytkow 1972;
Kato & Iben 1992).

Ṁw ≡ 4πr2ρv = const., dMr

dr
= 4πr2ρ, (8)

v
dv
dr
+

1
ρ

dP
dr
+

GMr

r2 = 0, (9)

Λ ≡ Lr + Ṁw

(
v2

2 +
5RT
2µ +

4aradT4

3ρ +

∫ r

rs

GMr

r2 dr
)
= const.,

(10)

where v is the wind velocity, Ṁw the mass-loss rate, Λ the
energy constant, rs the sonic point radius. In Eq. (10), we
neglect the nuclear energy generation, since the wind tem-
perature is too low for it to become significant. It should be
noted that in the limit of Ṁw → 0 and vdv/dr → 0, Eqs. (8-
10) return to Eqs. (1-3) with ϵnuc = 0.

In the wind region, the total luminosity Lr is calcu-
lated from Eq. (4) as well. ∇rad is, however, calculated
without assuming the hydrostatic equilibrium as ∇rad =
3κLr P/(16πaradcr2T4)/(−ρ−1dP/dr) by substituting Eq. (9)
in it. Moreover, in the supersonic region, we neglect the con-
vective energy transport since the velocity of the convective
element should be less than the sound speed and it may not
exceed the energy transport by advection.

2.3 Connecting Wind Envelope to Hydrostatic
Core

In the wind region, the equations (4, 8-10) have five un-
known functions, v(r), ρ(r),T (r), Lr , and Mr , while in the
core region, the equations (1-4) have four (since v(r) = 0). A
wind solution that is smoothly connected to a core solution
can be obtained by providing five boundary conditions: two
of them at the core center, other two at the sonic point, and
the last one at the photosphere.

First, at the core center, the luminosity and enclosed
mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (11)

Therefore, we can obtain one core solution, if we give the
values of density and temperature at the core center, ρc and
Tc.

Second, the following regularity conditions should be
satisfied at the sonic point. By substituting Eqs. (5) and (8)
into Eq. (9), it is rewritten as

1
v

dv
dr
=

⎡⎢⎢⎢⎢⎣
2
r

c2
T −

1
ρ

(
∂P
∂T

)

ρ

dT
dr
− GMr

r2

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
, (12)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed. We
can see from Eq. (12) that the sonic point is the singular
point of the equation. A transonic wind solution can be
obtained by requiring that the numerator of the equation
vanishes at the sonic point and that the velocity gradient
become finite there (Lamers & Cassinelli 1999). From these

regularity conditions, we can evaluate dT/dr (so do the ra-
diative luminosity) and the wind velocity at the sonic point,
for the given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass there
with the total mass of a star, M∗, since the total mass in the
supersonic region must be much less than that. To summa-
rize, the following two boundary conditions are set at the
sonic point:

v(rs) = cT(ρs,Ts) and Lrad(rs) = Lrad(rs, ρs,Ts) at M (rs) = M∗.
(13)

It should be noted that once the values of rs, ρs, and Ts are
specified, we can obtain one wind solution. This is because,
for a given set of (rs, ρs,Ts), Ṁw and Λ can be evaluated
from Eqs. (8) and (10), respectively, and the velocity gradi-
ent at the sonic point by using the de l’Hopital rule to Eq.
(12) (Lamers & Cassinelli 1999; Nugis & Lamers 2002).

Finally, at the photospheric radius (rph), where the ef-

fective temperature Teff ≡ (Lrad/4πr2σSB)1/4 with σSB the
Stefan-Boltzman constant becomes equal to the local tem-
perature, we require that the opacity-like variable τ ≡ κρr
takes a value as close to 3 as possible (Kato & Iben 1992;
Kato & Hachisu 1994). Therefore, the boundary condition
at the photosphere are represented as

Teff = T (rph) and τ(rph) ≃ 3. (14)

The values of the five parameters, ρc, Tc, rs, ρs, and
Ts, are determined iteratively so that the wind solution is
smoothly connected to the hydrostatic core at some radius
rm between the core center and the sonic point. Here, we
choose rm at the radius where the temperature becomes
around 108 K, i.e., T (rm) ≃ 108 K. We first fix the value of
ρs and iteratively determine the values of ρc, Tc, rs, and Ts
so that the enclosed mass, density, and temperature should
be continuous, and the total luminosity should be conserved
at the matching radius rm:

Mcore(rm) = Mwind(rm),
ρcore(rm) = ρwind(rm), (15)

Tcore(rm) = Twind(rm),

Lcore(rm) = Lwind(rm)

+ Ṁw '
(
v2(rm)

2 +
5R
2µTwind(rm) +

4arad
3

T4
wind(rm)
ρwind(rm)

)
*

= Λ + Ṁw

∫ rs

rm

GMr

r2 dr . (16)

Next, ρs is determined so that the wind solution satisfies the
photospheric condition Eq. (18). Hence, we have obtained a
self-consistent W-R model.

2.4 Models

Chemical Composition

In this paper, we consider two types of W-R models, WN
models and WC models. Since we consider H-free W-R mod-
els, the mass fraction of H is set to zero, X = 0, in both mod-
els. The mass fraction of He, Y , is calculated from Y = 1− Z̃,
where Z̃ is the mass fraction of metals heavier than He. In
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WN models, we suppose that Z̃ is identical with the metal-
licity Z in solar composition (Grevesse & Noels 1993), while
in WC models, the mass fractions of C and O are enhanced
by dXC = 0.4 and dXO = 0.1, i.e., Z̃ = Z + dXC + dXO. In each
model, we consider three different metallicities of Z = 1, 2,
and 4 Z⊙ with Z⊙ = 0.02 the solar metallicity.

Wind Clumping

According to the detailed modeling of WR atmo-
sphere with radiation hydrodynamics, wind clumping
is considered to be indispensable for reproducing the
SED (Hamann & Koesterke 1998). We include this effect
by mimicking the functional form used in Hillier & Miller
(1999). The clump is optically thin and its volume filling
factor fV is

fV(r) = D−1 + (1 − D−1) exp(−(v(r) − b)/b), v(r) ≥ b. (17)

where D is the clumping factor and we fix b = 200 km s−1 in
this paper (Hillier & Miller 1999). At v(r) ≥ b, the opacity
is modified as κ(ρ,T ) → κ(ρ/ fV,T ) (Gräfener et al. 2012).

We also consider the case of b = 1.1v(rs) ≃ v(rs). In this
case, wind clumping and the opacity enhancement become
effective in the entire supersonic region.

T (105 K)

Teff = T (rph) τ(rph) = 3 (18)

3 RESULTS

3.1 WN Models without Wind Clumping

First, we show the stellar structure of a WN model with
M∗ = 48 M⊙, Z = 1 Z⊙, and D = 1 (Figure 1). In this model,
the matching point and the sonic point (filled circle) are lo-
cated at rm ≃ 1 R⊙ and rs ≃ 2.5 R⊙, respectively. While the
wind velocity is sufficiently subsonic (v ! 1 cm s−1) around
the matching radius, it is steeply accelerated to a supersonic
speed at the sonic radius (panel a). It finally reaches a con-
stant speed of v∞ ∼ 8 × 107 cm s−1, which is smaller than
the observed wind velocity of WN stars by a factor of a
few (Hamann et al. 2006). In our formulation, the mass-loss
rate is determined uniquely as an eigenvalue of the equa-
tions. In this model, we find Ṁw ≃ 10−4 M⊙ yr−1, which
corresponds to the high end of the observed mass-loss rates.

The density and temperature profiles show rapid decline
around rs (panels b and c). In the supersonic region, density
decreases inversely proportional to the square of radius, ρ ∝
r−2, since the wind velocity is almost constant there. We find
that the radiation pressure dominates the gas pressure over
the supersonic region, while they are almost the same order
of magnitude in the hydrostatic core and subsonic wind.

The luminosity is almost constant (Lph ≃ 1.7 × 106 L⊙)
throughout the wind envelope (panel d). According to the
mass-luminosity relation obtained from the hydrostatic W-R
models (Langer 1989; Schaerer & Maeder 1992):

log
(

L∗
L⊙

)
= 3.03 + 2.70 log

(
M∗
M⊙

)
− 0.46

(
log

(
M∗
M⊙

))2
, (19)

the stellar luminosity is evaluated as L∗ ≃ 1.85×106 L⊙ with
M∗ = 48 M⊙, which is consistent with our result.
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Figure 1. Stellar structures of a WN model with M∗ = 48 M⊙,
Z = 1 Z⊙, and D = 1. In each panel, the filled circle shows the
location of the sonic point. Panel a): The velocity structure of
the wind. The purple line shows the wind velocity, the green
line isothermal sound speed, and the grey-shaded region where
v(r ) ≥ vesc (r ) holds. Panel b): The density profile. Panel c): The
temperature profile. Panel d): The luminosity structure. The pur-
ple line shows the total luminosity and the green one the local
Eddington luminosity.
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Figure 2. The opacity structure in the wind envelope of the WN
model with M∗ = 48 M⊙, Z = 1 Z⊙, and D = 1.

For wind acceleration, the presence of the super-
Eddington layer becomes a key. While the luminosity is
sub-Eddington in the subsonic region, it turns into super-
Eddington beyond the sonic point. At r ∼ 4 R⊙, however, it
returns to sub-Eddington again. Around this point, the wind
acceleration stops and the wind velocity begins to decrease
gradually. The super-Eddington layer is induced by the iron
opacity bump at T ≃ 2 × 105 K, which can be confirmed
from Figure 2. We find that wind acceleration is initiated
by iron opacity bump as found in Nugis & Lamers (2002);
Gräfener & Hamann (2005)

We consider, however, that the above model is not ap-
propriate as a steady wind solution. This is because in steady
wind solutions, the velocity at the photosphere should ex-
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2.2 Optically Thick Wind Envelope

The basic equations to construct an optically thick wind
solution are given below. Note that our formulation is valid
as long as the wind is optically thick (e.g., Żytkow 1972;
Kato & Iben 1992).

Ṁw ≡ 4πr2ρv = const., dMr

dr
= 4πr2ρ, (8)

v
dv
dr
+

1
ρ

dP
dr
+

GMr

r2 = 0, (9)

Λ ≡ Lr + Ṁw

(
v2

2 +
5RT
2µ +

4aradT4

3ρ +

∫ r

rs

GMr

r2 dr
)
= const.,

(10)

where v is the wind velocity, Ṁw the mass-loss rate, Λ the
energy constant, rs the sonic point radius. In Eq. (10), we
neglect the nuclear energy generation, since the wind tem-
perature is too low for it to become significant. It should be
noted that in the limit of Ṁw → 0 and vdv/dr → 0, Eqs. (8-
10) return to Eqs. (1-3) with ϵnuc = 0.

In the wind region, the total luminosity Lr is calcu-
lated from Eq. (4) as well. ∇rad is, however, calculated
without assuming the hydrostatic equilibrium as ∇rad =
3κLr P/(16πaradcr2T4)/(−ρ−1dP/dr) by substituting Eq. (9)
in it. Moreover, in the supersonic region, we neglect the con-
vective energy transport since the velocity of the convective
element should be less than the sound speed and it may not
exceed the energy transport by advection.

2.3 Connecting Wind Envelope to Hydrostatic
Core

In the wind region, the equations (4, 8-10) have five un-
known functions, v(r), ρ(r),T (r), Lr , and Mr , while in the
core region, the equations (1-4) have four (since v(r) = 0). A
wind solution that is smoothly connected to a core solution
can be obtained by providing five boundary conditions: two
of them at the core center, other two at the sonic point, and
the last one at the photosphere.

First, at the core center, the luminosity and enclosed
mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (11)

Therefore, we can obtain one core solution, if we give the
values of density and temperature at the core center, ρc and
Tc.

Second, the following regularity conditions should be
satisfied at the sonic point. By substituting Eqs. (5) and (8)
into Eq. (9), it is rewritten as

1
v

dv
dr
=

⎡⎢⎢⎢⎢⎣
2
r

c2
T −

1
ρ

(
∂P
∂T

)

ρ

dT
dr
− GMr

r2

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
, (12)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed. We
can see from Eq. (12) that the sonic point is the singular
point of the equation. A transonic wind solution can be
obtained by requiring that the numerator of the equation
vanishes at the sonic point and that the velocity gradient
become finite there (Lamers & Cassinelli 1999). From these

regularity conditions, we can evaluate dT/dr (so do the ra-
diative luminosity) and the wind velocity at the sonic point,
for the given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass there
with the total mass of a star, M∗, since the total mass in the
supersonic region must be much less than that. To summa-
rize, the following two boundary conditions are set at the
sonic point:

v(rs) = cT(ρs,Ts) and Lrad(rs) = Lrad(rs, ρs,Ts) at M (rs) = M∗.
(13)

It should be noted that once the values of rs, ρs, and Ts are
specified, we can obtain one wind solution. This is because,
for a given set of (rs, ρs,Ts), Ṁw and Λ can be evaluated
from Eqs. (8) and (10), respectively, and the velocity gradi-
ent at the sonic point by using the de l’Hopital rule to Eq.
(12) (Lamers & Cassinelli 1999; Nugis & Lamers 2002).

Finally, at the photospheric radius (rph), where the ef-

fective temperature Teff ≡ (Lrad/4πr2σSB)1/4 with σSB the
Stefan-Boltzman constant becomes equal to the local tem-
perature, we require that the opacity-like variable τ ≡ κρr
takes a value as close to 3 as possible (Kato & Iben 1992;
Kato & Hachisu 1994). Therefore, the boundary condition
at the photosphere are represented as

Teff = T (rph) and τ(rph) ≃ 3. (14)

The values of the five parameters, ρc, Tc, rs, ρs, and
Ts, are determined iteratively so that the wind solution is
smoothly connected to the hydrostatic core at some radius
rm between the core center and the sonic point. Here, we
choose rm at the radius where the temperature becomes
around 108 K, i.e., T (rm) ≃ 108 K. We first fix the value of
ρs and iteratively determine the values of ρc, Tc, rs, and Ts
so that the enclosed mass, density, and temperature should
be continuous, and the total luminosity should be conserved
at the matching radius rm:

Mcore(rm) = Mwind(rm),
ρcore(rm) = ρwind(rm), (15)

Tcore(rm) = Twind(rm),

Lcore(rm) = Lwind(rm)

+ Ṁw '
(
v2(rm)

2 +
5R
2µTwind(rm) +

4arad
3

T4
wind(rm)
ρwind(rm)

)
*

= Λ + Ṁw

∫ rs

rm

GMr

r2 dr . (16)

Next, ρs is determined so that the wind solution satisfies the
photospheric condition Eq. (18). Hence, we have obtained a
self-consistent W-R model.

2.4 Models

Chemical Composition

In this paper, we consider two types of W-R models, WN
models and WC models. Since we consider H-free W-R mod-
els, the mass fraction of H is set to zero, X = 0, in both mod-
els. The mass fraction of He, Y , is calculated from Y = 1− Z̃,
where Z̃ is the mass fraction of metals heavier than He. In
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2.2 Optically Thick Wind Envelope

The basic equations to construct an optically thick wind
solution are given below. Note that our formulation is valid
as long as the wind is optically thick (e.g., Żytkow 1972;
Kato & Iben 1992).

Ṁw ≡ 4πr2ρv = const., dMr

dr
= 4πr2ρ, (8)

v
dv
dr
+

1
ρ

dP
dr
+

GMr

r2 = 0, (9)

Λ ≡ Lr + Ṁw

(
v2

2 +
5RT
2µ +

4aradT4

3ρ +

∫ r

rs

GMr

r2 dr
)
= const.,

(10)

where v is the wind velocity, Ṁw the mass-loss rate, Λ the
energy constant, rs the sonic point radius. In Eq. (10), we
neglect the nuclear energy generation, since the wind tem-
perature is too low for it to become significant. It should be
noted that in the limit of Ṁw → 0 and vdv/dr → 0, Eqs. (8-
10) return to Eqs. (1-3) with ϵnuc = 0.

In the wind region, the total luminosity Lr is calcu-
lated from Eq. (4) as well. ∇rad is, however, calculated
without assuming the hydrostatic equilibrium as ∇rad =
3κLr P/(16πaradcr2T4)/(−ρ−1dP/dr) by substituting Eq. (9)
in it. Moreover, in the supersonic region, we neglect the con-
vective energy transport since the velocity of the convective
element should be less than the sound speed and it may not
exceed the energy transport by advection.

2.3 Connecting Wind Envelope to Hydrostatic
Core

In the wind region, the equations (4, 8-10) have five un-
known functions, v(r), ρ(r),T (r), Lr , and Mr , while in the
core region, the equations (1-4) have four (since v(r) = 0). A
wind solution that is smoothly connected to a core solution
can be obtained by providing five boundary conditions: two
of them at the core center, other two at the sonic point, and
the last one at the photosphere.

First, at the core center, the luminosity and enclosed
mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (11)

Therefore, we can obtain one core solution, if we give the
values of density and temperature at the core center, ρc and
Tc.

Second, the following regularity conditions should be
satisfied at the sonic point. By substituting Eqs. (5) and (8)
into Eq. (9), it is rewritten as

1
v

dv
dr
=

⎡⎢⎢⎢⎢⎣
2
r

c2
T −

1
ρ

(
∂P
∂T

)

ρ

dT
dr
− GMr

r2

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
, (12)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed. We
can see from Eq. (12) that the sonic point is the singular
point of the equation. A transonic wind solution can be
obtained by requiring that the numerator of the equation
vanishes at the sonic point and that the velocity gradient
become finite there (Lamers & Cassinelli 1999). From these

regularity conditions, we can evaluate dT/dr (so do the ra-
diative luminosity) and the wind velocity at the sonic point,
for the given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass there
with the total mass of a star, M∗, since the total mass in the
supersonic region must be much less than that. To summa-
rize, the following two boundary conditions are set at the
sonic point:

v(rs) = cT(ρs,Ts) and Lrad(rs) = Lrad(rs, ρs,Ts) at M (rs) = M∗.
(13)

It should be noted that once the values of rs, ρs, and Ts are
specified, we can obtain one wind solution. This is because,
for a given set of (rs, ρs,Ts), Ṁw and Λ can be evaluated
from Eqs. (8) and (10), respectively, and the velocity gradi-
ent at the sonic point by using the de l’Hopital rule to Eq.
(12) (Lamers & Cassinelli 1999; Nugis & Lamers 2002).

Finally, at the photospheric radius (rph), where the ef-

fective temperature Teff ≡ (Lrad/4πr2σSB)1/4 with σSB the
Stefan-Boltzman constant becomes equal to the local tem-
perature, we require that the opacity-like variable τ ≡ κρr
takes a value as close to 3 as possible (Kato & Iben 1992;
Kato & Hachisu 1994). Therefore, the boundary condition
at the photosphere are represented as

Teff = T (rph) and τ(rph) ≃ 3. (14)

The values of the five parameters, ρc, Tc, rs, ρs, and
Ts, are determined iteratively so that the wind solution is
smoothly connected to the hydrostatic core at some radius
rm between the core center and the sonic point. Here, we
choose rm at the radius where the temperature becomes
around 108 K, i.e., T (rm) ≃ 108 K. We first fix the value of
ρs and iteratively determine the values of ρc, Tc, rs, and Ts
so that the enclosed mass, density, and temperature should
be continuous, and the total luminosity should be conserved
at the matching radius rm:

Mcore(rm) = Mwind(rm),
ρcore(rm) = ρwind(rm), (15)

Tcore(rm) = Twind(rm),

Lcore(rm) = Lwind(rm)

+ Ṁw '
(
v2(rm)

2 +
5R
2µTwind(rm) +

4arad
3

T4
wind(rm)
ρwind(rm)

)
*

= Λ + Ṁw

∫ rs

rm

GMr

r2 dr . (16)

Next, ρs is determined so that the wind solution satisfies the
photospheric condition Eq. (18). Hence, we have obtained a
self-consistent W-R model.

2.4 Models

Chemical Composition

In this paper, we consider two types of W-R models, WN
models and WC models. Since we consider H-free W-R mod-
els, the mass fraction of H is set to zero, X = 0, in both mod-
els. The mass fraction of He, Y , is calculated from Y = 1− Z̃,
where Z̃ is the mass fraction of metals heavier than He. In
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2.2 Optically Thick Wind Envelope

The basic equations to construct an optically thick wind
solution are given below. Note that our formulation is valid
as long as the wind is optically thick (e.g., Żytkow 1972;
Kato & Iben 1992).

Ṁw ≡ 4πr2ρv = const., dMr

dr
= 4πr2ρ, (8)

v
dv
dr
+

1
ρ

dP
dr
+

GMr

r2 = 0, (9)

Λ ≡ Lr + Ṁw

(
v2

2 +
5RT
2µ +

4aradT4

3ρ +

∫ r

rs

GMr

r2 dr
)
= const.,

(10)

where v is the wind velocity, Ṁw the mass-loss rate, Λ the
energy constant, rs the sonic point radius. In Eq. (10), we
neglect the nuclear energy generation, since the wind tem-
perature is too low for it to become significant. It should be
noted that in the limit of Ṁw → 0 and vdv/dr → 0, Eqs. (8-
10) return to Eqs. (1-3) with ϵnuc = 0.

In the wind region, the total luminosity Lr is calcu-
lated from Eq. (4) as well. ∇rad is, however, calculated
without assuming the hydrostatic equilibrium as ∇rad =
3κLr P/(16πaradcr2T4)/(−ρ−1dP/dr) by substituting Eq. (9)
in it. Moreover, in the supersonic region, we neglect the con-
vective energy transport since the velocity of the convective
element should be less than the sound speed and it may not
exceed the energy transport by advection.

2.3 Connecting Wind Envelope to Hydrostatic
Core

In the wind region, the equations (4, 8-10) have five un-
known functions, v(r), ρ(r),T (r), Lr , and Mr , while in the
core region, the equations (1-4) have four (since v(r) = 0). A
wind solution that is smoothly connected to a core solution
can be obtained by providing five boundary conditions: two
of them at the core center, other two at the sonic point, and
the last one at the photosphere.

First, at the core center, the luminosity and enclosed
mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (11)

Therefore, we can obtain one core solution, if we give the
values of density and temperature at the core center, ρc and
Tc.

Second, the following regularity conditions should be
satisfied at the sonic point. By substituting Eqs. (5) and (8)
into Eq. (9), it is rewritten as

1
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dv
dr
=
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(
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(
v2 − c2

T
)
, (12)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed. We
can see from Eq. (12) that the sonic point is the singular
point of the equation. A transonic wind solution can be
obtained by requiring that the numerator of the equation
vanishes at the sonic point and that the velocity gradient
become finite there (Lamers & Cassinelli 1999). From these

regularity conditions, we can evaluate dT/dr (so do the ra-
diative luminosity) and the wind velocity at the sonic point,
for the given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass there
with the total mass of a star, M∗, since the total mass in the
supersonic region must be much less than that. To summa-
rize, the following two boundary conditions are set at the
sonic point:

v(rs) = cT(ρs,Ts) and Lrad(rs) = Lrad(rs, ρs,Ts) at M (rs) = M∗.
(13)

It should be noted that once the values of rs, ρs, and Ts are
specified, we can obtain one wind solution. This is because,
for a given set of (rs, ρs,Ts), Ṁw and Λ can be evaluated
from Eqs. (8) and (10), respectively, and the velocity gradi-
ent at the sonic point by using the de l’Hopital rule to Eq.
(12) (Lamers & Cassinelli 1999; Nugis & Lamers 2002).

Finally, at the photospheric radius (rph), where the ef-

fective temperature Teff ≡ (Lrad/4πr2σSB)1/4 with σSB the
Stefan-Boltzman constant becomes equal to the local tem-
perature, we require that the opacity-like variable τ ≡ κρr
takes a value as close to 3 as possible (Kato & Iben 1992;
Kato & Hachisu 1994). Therefore, the boundary condition
at the photosphere are represented as

Teff = T (rph) and τ(rph) ≃ 3. (14)

The values of the five parameters, ρc, Tc, rs, ρs, and
Ts, are determined iteratively so that the wind solution is
smoothly connected to the hydrostatic core at some radius
rm between the core center and the sonic point. Here, we
choose rm at the radius where the temperature becomes
around 108 K, i.e., T (rm) ≃ 108 K. We first fix the value of
ρs and iteratively determine the values of ρc, Tc, rs, and Ts
so that the enclosed mass, density, and temperature should
be continuous, and the total luminosity should be conserved
at the matching radius rm:

Mcore(rm) = Mwind(rm),
ρcore(rm) = ρwind(rm), (15)

Tcore(rm) = Twind(rm),

Lcore(rm) = Lwind(rm)

+ Ṁw '
(
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2 +
5R
2µTwind(rm) +

4arad
3

T4
wind(rm)
ρwind(rm)

)
*

= Λ + Ṁw

∫ rs

rm

GMr

r2 dr . (16)

Next, ρs is determined so that the wind solution satisfies the
photospheric condition Eq. (18). Hence, we have obtained a
self-consistent W-R model.

2.4 Models

Chemical Composition

In this paper, we consider two types of W-R models, WN
models and WC models. Since we consider H-free W-R mod-
els, the mass fraction of H is set to zero, X = 0, in both mod-
els. The mass fraction of He, Y , is calculated from Y = 1− Z̃,
where Z̃ is the mass fraction of metals heavier than He. In
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2.2 Optically Thick Wind Envelope

The basic equations to construct an optically thick wind
solution are given below. Note that our formulation is valid
as long as the wind is optically thick (e.g., Żytkow 1972;
Kato & Iben 1992).

Ṁw ≡ 4πr2ρv = const., dMr

dr
= 4πr2ρ, (8)

v
dv
dr
+

1
ρ

dP
dr
+

GMr

r2 = 0, (9)

Λ ≡ Lr + Ṁw

(
v2

2 +
5RT
2µ +

4aradT4

3ρ +

∫ r

rs

GMr

r2 dr
)
= const.,

(10)

where v is the wind velocity, Ṁw the mass-loss rate, Λ the
energy constant, rs the sonic point radius. In Eq. (10), we
neglect the nuclear energy generation, since the wind tem-
perature is too low for it to become significant. It should be
noted that in the limit of Ṁw → 0 and vdv/dr → 0, Eqs. (8-
10) return to Eqs. (1-3) with ϵnuc = 0.

In the wind region, the total luminosity Lr is calcu-
lated from Eq. (4) as well. ∇rad is, however, calculated
without assuming the hydrostatic equilibrium as ∇rad =
3κLr P/(16πaradcr2T4)/(−ρ−1dP/dr) by substituting Eq. (9)
in it. Moreover, in the supersonic region, we neglect the con-
vective energy transport since the velocity of the convective
element should be less than the sound speed and it may not
exceed the energy transport by advection.

2.3 Connecting Wind Envelope to Hydrostatic
Core

In the wind region, the equations (4, 8-10) have five un-
known functions, v(r), ρ(r),T (r), Lr , and Mr , while in the
core region, the equations (1-4) have four (since v(r) = 0). A
wind solution that is smoothly connected to a core solution
can be obtained by providing five boundary conditions: two
of them at the core center, other two at the sonic point, and
the last one at the photosphere.

First, at the core center, the luminosity and enclosed
mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (11)

Therefore, we can obtain one core solution, if we give the
values of density and temperature at the core center, ρc and
Tc.

Second, the following regularity conditions should be
satisfied at the sonic point. By substituting Eqs. (5) and (8)
into Eq. (9), it is rewritten as
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=
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where cT =
√

(∂P/∂ρ)T is the isothermal sound speed. We
can see from Eq. (12) that the sonic point is the singular
point of the equation. A transonic wind solution can be
obtained by requiring that the numerator of the equation
vanishes at the sonic point and that the velocity gradient
become finite there (Lamers & Cassinelli 1999). From these

regularity conditions, we can evaluate dT/dr (so do the ra-
diative luminosity) and the wind velocity at the sonic point,
for the given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass there
with the total mass of a star, M∗, since the total mass in the
supersonic region must be much less than that. To summa-
rize, the following two boundary conditions are set at the
sonic point:

v(rs) = cT(ρs,Ts) and Lrad(rs) = Lrad(rs, ρs,Ts) at M (rs) = M∗.
(13)

It should be noted that once the values of rs, ρs, and Ts are
specified, we can obtain one wind solution. This is because,
for a given set of (rs, ρs,Ts), Ṁw and Λ can be evaluated
from Eqs. (8) and (10), respectively, and the velocity gradi-
ent at the sonic point by using the de l’Hopital rule to Eq.
(12) (Lamers & Cassinelli 1999; Nugis & Lamers 2002).

Finally, at the photospheric radius (rph), where the ef-

fective temperature Teff ≡ (Lrad/4πr2σSB)1/4 with σSB the
Stefan-Boltzman constant becomes equal to the local tem-
perature, we require that the opacity-like variable τ ≡ κρr
takes a value as close to 3 as possible (Kato & Iben 1992;
Kato & Hachisu 1994). Therefore, the boundary condition
at the photosphere are represented as

Teff = T (rph) and τ(rph) ≃ 3. (14)

The values of the five parameters, ρc, Tc, rs, ρs, and
Ts, are determined iteratively so that the wind solution is
smoothly connected to the hydrostatic core at some radius
rm between the core center and the sonic point. Here, we
choose rm at the radius where the temperature becomes
around 108 K, i.e., T (rm) ≃ 108 K. We first fix the value of
ρs and iteratively determine the values of ρc, Tc, rs, and Ts
so that the enclosed mass, density, and temperature should
be continuous, and the total luminosity should be conserved
at the matching radius rm:

Mcore(rm) = Mwind(rm),
ρcore(rm) = ρwind(rm), (15)

Tcore(rm) = Twind(rm),

Lcore(rm) = Lwind(rm)

+ Ṁw '
(
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2µTwind(rm) +
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wind(rm)
ρwind(rm)

)
*

= Λ + Ṁw

∫ rs

rm
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r2 dr . (16)

Next, ρs is determined so that the wind solution satisfies the
photospheric condition Eq. (18). Hence, we have obtained a
self-consistent W-R model.

2.4 Models

Chemical Composition

In this paper, we consider two types of W-R models, WN
models and WC models. Since we consider H-free W-R mod-
els, the mass fraction of H is set to zero, X = 0, in both mod-
els. The mass fraction of He, Y , is calculated from Y = 1− Z̃,
where Z̃ is the mass fraction of metals heavier than He. In
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2.2 Optically Thick Wind Envelope

The basic equations to construct an optically thick wind
solution are given below. Note that our formulation is valid
as long as the wind is optically thick (e.g., Żytkow 1972;
Kato & Iben 1992).

Ṁw ≡ 4πr2ρv = const., dMr

dr
= 4πr2ρ, (8)

v
dv
dr
+

1
ρ

dP
dr
+

GMr

r2 = 0, (9)

Λ ≡ Lr + Ṁw

(
v2

2 +
5RT
2µ +

4aradT4

3ρ +

∫ r

rs

GMr

r2 dr
)
= const.,

(10)

where v is the wind velocity, Ṁw the mass-loss rate, Λ the
energy constant, rs the sonic point radius. In Eq. (10), we
neglect the nuclear energy generation, since the wind tem-
perature is too low for it to become significant. It should be
noted that in the limit of Ṁw → 0 and vdv/dr → 0, Eqs. (8-
10) return to Eqs. (1-3) with ϵnuc = 0.

In the wind region, the total luminosity Lr is calcu-
lated from Eq. (4) as well. ∇rad is, however, calculated
without assuming the hydrostatic equilibrium as ∇rad =
3κLr P/(16πaradcr2T4)/(−ρ−1dP/dr) by substituting Eq. (9)
in it. Moreover, in the supersonic region, we neglect the con-
vective energy transport since the velocity of the convective
element should be less than the sound speed and it may not
exceed the energy transport by advection.

2.3 Connecting Wind Envelope to Hydrostatic
Core

In the wind region, the equations (4, 8-10) have five un-
known functions, v(r), ρ(r),T (r), Lr , and Mr , while in the
core region, the equations (1-4) have four (since v(r) = 0). A
wind solution that is smoothly connected to a core solution
can be obtained by providing five boundary conditions: two
of them at the core center, other two at the sonic point, and
the last one at the photosphere.

First, at the core center, the luminosity and enclosed
mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (11)

Therefore, we can obtain one core solution, if we give the
values of density and temperature at the core center, ρc and
Tc.

Second, the following regularity conditions should be
satisfied at the sonic point. By substituting Eqs. (5) and (8)
into Eq. (9), it is rewritten as
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=
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2
r

c2
T −

1
ρ

(
∂P
∂T

)

ρ

dT
dr
− GMr

r2

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
, (12)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed. We
can see from Eq. (12) that the sonic point is the singular
point of the equation. A transonic wind solution can be
obtained by requiring that the numerator of the equation
vanishes at the sonic point and that the velocity gradient
become finite there (Lamers & Cassinelli 1999). From these

regularity conditions, we can evaluate dT/dr (so do the ra-
diative luminosity) and the wind velocity at the sonic point,
for the given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass there
with the total mass of a star, M∗, since the total mass in the
supersonic region must be much less than that. To summa-
rize, the following two boundary conditions are set at the
sonic point:

v(rs) = cT(ρs,Ts) and Lrad(rs) = Lrad(rs, ρs,Ts) at M (rs) = M∗.
(13)

It should be noted that once the values of rs, ρs, and Ts are
specified, we can obtain one wind solution. This is because,
for a given set of (rs, ρs,Ts), Ṁw and Λ can be evaluated
from Eqs. (8) and (10), respectively, and the velocity gradi-
ent at the sonic point by using the de l’Hopital rule to Eq.
(12) (Lamers & Cassinelli 1999; Nugis & Lamers 2002).

Finally, at the photospheric radius (rph), where the ef-

fective temperature Teff ≡ (Lrad/4πr2σSB)1/4 with σSB the
Stefan-Boltzman constant becomes equal to the local tem-
perature, we require that the opacity-like variable τ ≡ κρr
takes a value as close to 3 as possible (Kato & Iben 1992;
Kato & Hachisu 1994). Therefore, the boundary condition
at the photosphere are represented as

Teff = T (rph) and τ(rph) ≃ 3. (14)

The values of the five parameters, ρc, Tc, rs, ρs, and
Ts, are determined iteratively so that the wind solution is
smoothly connected to the hydrostatic core at some radius
rm between the core center and the sonic point. Here, we
choose rm at the radius where the temperature becomes
around 108 K, i.e., T (rm) ≃ 108 K. We first fix the value of
ρs and iteratively determine the values of ρc, Tc, rs, and Ts
so that the enclosed mass, density, and temperature should
be continuous, and the total luminosity should be conserved
at the matching radius rm:

Mcore(rm) = Mwind(rm),
ρcore(rm) = ρwind(rm), (15)

Tcore(rm) = Twind(rm),

Lcore(rm) = Lwind(rm)

+ Ṁw '
(
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2µTwind(rm) +
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3
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wind(rm)
ρwind(rm)

)
*

= Λ + Ṁw
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r2 dr . (16)

Next, ρs is determined so that the wind solution satisfies the
photospheric condition Eq. (18). Hence, we have obtained a
self-consistent W-R model.

2.4 Models

Chemical Composition

In this paper, we consider two types of W-R models, WN
models and WC models. Since we consider H-free W-R mod-
els, the mass fraction of H is set to zero, X = 0, in both mod-
els. The mass fraction of He, Y , is calculated from Y = 1− Z̃,
where Z̃ is the mass fraction of metals heavier than He. In
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2.2 Optically Thick Wind Envelope

The basic equations to construct an optically thick wind
solution are given below. Note that our formulation is valid
as long as the wind is optically thick (e.g., Żytkow 1972;
Kato & Iben 1992).

Ṁw ≡ 4πr2ρv = const., dMr

dr
= 4πr2ρ, (8)

v
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+

1
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dr
+
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r2 = 0, (9)

Λ ≡ Lr + Ṁw

(
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3ρ +

∫ r
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GMr

r2 dr
)
= const.,

(10)

where v is the wind velocity, Ṁw the mass-loss rate, Λ the
energy constant, rs the sonic point radius. In Eq. (10), we
neglect the nuclear energy generation, since the wind tem-
perature is too low for it to become significant. It should be
noted that in the limit of Ṁw → 0 and vdv/dr → 0, Eqs. (8-
10) return to Eqs. (1-3) with ϵnuc = 0.

In the wind region, the total luminosity Lr is calcu-
lated from Eq. (4) as well. ∇rad is, however, calculated
without assuming the hydrostatic equilibrium as ∇rad =
3κLr P/(16πaradcr2T4)/(−ρ−1dP/dr) by substituting Eq. (9)
in it. Moreover, in the supersonic region, we neglect the con-
vective energy transport since the velocity of the convective
element should be less than the sound speed and it may not
exceed the energy transport by advection.

2.3 Connecting Wind Envelope to Hydrostatic
Core

In the wind region, the equations (4, 8-10) have five un-
known functions, v(r), ρ(r),T (r), Lr , and Mr , while in the
core region, the equations (1-4) have four (since v(r) = 0). A
wind solution that is smoothly connected to a core solution
can be obtained by providing five boundary conditions: two
of them at the core center, other two at the sonic point, and
the last one at the photosphere.

First, at the core center, the luminosity and enclosed
mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (11)

Therefore, we can obtain one core solution, if we give the
values of density and temperature at the core center, ρc and
Tc.

Second, the following regularity conditions should be
satisfied at the sonic point. By substituting Eqs. (5) and (8)
into Eq. (9), it is rewritten as
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where cT =
√

(∂P/∂ρ)T is the isothermal sound speed. We
can see from Eq. (12) that the sonic point is the singular
point of the equation. A transonic wind solution can be
obtained by requiring that the numerator of the equation
vanishes at the sonic point and that the velocity gradient
become finite there (Lamers & Cassinelli 1999). From these

regularity conditions, we can evaluate dT/dr (so do the ra-
diative luminosity) and the wind velocity at the sonic point,
for the given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass there
with the total mass of a star, M∗, since the total mass in the
supersonic region must be much less than that. To summa-
rize, the following two boundary conditions are set at the
sonic point:

v(rs) = cT(ρs,Ts) and Lrad(rs) = Lrad(rs, ρs,Ts) at M (rs) = M∗.
(13)

It should be noted that once the values of rs, ρs, and Ts are
specified, we can obtain one wind solution. This is because,
for a given set of (rs, ρs,Ts), Ṁw and Λ can be evaluated
from Eqs. (8) and (10), respectively, and the velocity gradi-
ent at the sonic point by using the de l’Hopital rule to Eq.
(12) (Lamers & Cassinelli 1999; Nugis & Lamers 2002).

Finally, at the photospheric radius (rph), where the ef-

fective temperature Teff ≡ (Lrad/4πr2σSB)1/4 with σSB the
Stefan-Boltzman constant becomes equal to the local tem-
perature, we require that the opacity-like variable τ ≡ κρr
takes a value as close to 3 as possible (Kato & Iben 1992;
Kato & Hachisu 1994). Therefore, the boundary condition
at the photosphere are represented as

Teff = T (rph) and τ(rph) ≃ 3. (14)

The values of the five parameters, ρc, Tc, rs, ρs, and
Ts, are determined iteratively so that the wind solution is
smoothly connected to the hydrostatic core at some radius
rm between the core center and the sonic point. Here, we
choose rm at the radius where the temperature becomes
around 108 K, i.e., T (rm) ≃ 108 K. We first fix the value of
ρs and iteratively determine the values of ρc, Tc, rs, and Ts
so that the enclosed mass, density, and temperature should
be continuous, and the total luminosity should be conserved
at the matching radius rm:

Mcore(rm) = Mwind(rm),
ρcore(rm) = ρwind(rm), (15)

Tcore(rm) = Twind(rm),

Lcore(rm) = Lwind(rm)

+ Ṁw '
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)
*

= Λ + Ṁw
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Next, ρs is determined so that the wind solution satisfies the
photospheric condition Eq. (18). Hence, we have obtained a
self-consistent W-R model.

2.4 Models

Chemical Composition

In this paper, we consider two types of W-R models, WN
models and WC models. Since we consider H-free W-R mod-
els, the mass fraction of H is set to zero, X = 0, in both mod-
els. The mass fraction of He, Y , is calculated from Y = 1− Z̃,
where Z̃ is the mass fraction of metals heavier than He. In
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2.2 Optically Thick Wind Envelope

The basic equations to construct an optically thick wind
solution are given below. Note that our formulation is valid
as long as the wind is optically thick (e.g., Żytkow 1972;
Kato & Iben 1992).

Ṁw ≡ 4πr2ρv = const., dMr

dr
= 4πr2ρ, (8)
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+
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+
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r2 = 0, (9)
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r2 dr
)
= const.,

(10)

where v is the wind velocity, Ṁw the mass-loss rate, Λ the
energy constant, rs the sonic point radius. In Eq. (10), we
neglect the nuclear energy generation, since the wind tem-
perature is too low for it to become significant. It should be
noted that in the limit of Ṁw → 0 and vdv/dr → 0, Eqs. (8-
10) return to Eqs. (1-3) with ϵnuc = 0.

In the wind region, the total luminosity Lr is calcu-
lated from Eq. (4) as well. ∇rad is, however, calculated
without assuming the hydrostatic equilibrium as ∇rad =
3κLr P/(16πaradcr2T4)/(−ρ−1dP/dr) by substituting Eq. (9)
in it. Moreover, in the supersonic region, we neglect the con-
vective energy transport since the velocity of the convective
element should be less than the sound speed and it may not
exceed the energy transport by advection.

2.3 Connecting Wind Envelope to Hydrostatic
Core

In the wind region, the equations (4, 8-10) have five un-
known functions, v(r), ρ(r),T (r), Lr , and Mr , while in the
core region, the equations (1-4) have four (since v(r) = 0). A
wind solution that is smoothly connected to a core solution
can be obtained by providing five boundary conditions: two
of them at the core center, other two at the sonic point, and
the last one at the photosphere.

First, at the core center, the luminosity and enclosed
mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (11)

Therefore, we can obtain one core solution, if we give the
values of density and temperature at the core center, ρc and
Tc.

Second, the following regularity conditions should be
satisfied at the sonic point. By substituting Eqs. (5) and (8)
into Eq. (9), it is rewritten as
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where cT =
√

(∂P/∂ρ)T is the isothermal sound speed. We
can see from Eq. (12) that the sonic point is the singular
point of the equation. A transonic wind solution can be
obtained by requiring that the numerator of the equation
vanishes at the sonic point and that the velocity gradient
become finite there (Lamers & Cassinelli 1999). From these

regularity conditions, we can evaluate dT/dr (so do the ra-
diative luminosity) and the wind velocity at the sonic point,
for the given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass there
with the total mass of a star, M∗, since the total mass in the
supersonic region must be much less than that. To summa-
rize, the following two boundary conditions are set at the
sonic point:

v(rs) = cT(ρs,Ts) and Lrad(rs) = Lrad(rs, ρs,Ts) at M (rs) = M∗.
(13)

It should be noted that once the values of rs, ρs, and Ts are
specified, we can obtain one wind solution. This is because,
for a given set of (rs, ρs,Ts), Ṁw and Λ can be evaluated
from Eqs. (8) and (10), respectively, and the velocity gradi-
ent at the sonic point by using the de l’Hopital rule to Eq.
(12) (Lamers & Cassinelli 1999; Nugis & Lamers 2002).

Finally, at the photospheric radius (rph), where the ef-

fective temperature Teff ≡ (Lrad/4πr2σSB)1/4 with σSB the
Stefan-Boltzman constant becomes equal to the local tem-
perature, we require that the opacity-like variable τ ≡ κρr
takes a value as close to 3 as possible (Kato & Iben 1992;
Kato & Hachisu 1994). Therefore, the boundary condition
at the photosphere are represented as

Teff = T (rph) and τ(rph) ≃ 3. (14)

The values of the five parameters, ρc, Tc, rs, ρs, and
Ts, are determined iteratively so that the wind solution is
smoothly connected to the hydrostatic core at some radius
rm between the core center and the sonic point. Here, we
choose rm at the radius where the temperature becomes
around 108 K, i.e., T (rm) ≃ 108 K. We first fix the value of
ρs and iteratively determine the values of ρc, Tc, rs, and Ts
so that the enclosed mass, density, and temperature should
be continuous, and the total luminosity should be conserved
at the matching radius rm:

Mcore(rm) = Mwind(rm),
ρcore(rm) = ρwind(rm), (15)

Tcore(rm) = Twind(rm),

Lcore(rm) = Lwind(rm)

+ Ṁw '
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*
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∫ rs

rm
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Next, ρs is determined so that the wind solution satisfies the
photospheric condition Eq. (18). Hence, we have obtained a
self-consistent W-R model.

2.4 Models

Chemical Composition

In this paper, we consider two types of W-R models, WN
models and WC models. Since we consider H-free W-R mod-
els, the mass fraction of H is set to zero, X = 0, in both mod-
els. The mass fraction of He, Y , is calculated from Y = 1− Z̃,
where Z̃ is the mass fraction of metals heavier than He. In
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2.2 Optically Thick Wind Envelope

The basic equations to construct an optically thick wind
solution are given below. Note that our formulation is valid
as long as the wind is optically thick (e.g., Żytkow 1972;
Kato & Iben 1992).

Ṁw ≡ 4πr2ρv = const., dMr

dr
= 4πr2ρ, (8)

v
dv
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+

1
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+
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r2 = 0, (9)

Λ ≡ Lr + Ṁw

(
v2

2 +
5RT
2µ +

4aradT4

3ρ +

∫ r

rs

GMr

r2 dr
)
= const.,

(10)

where v is the wind velocity, Ṁw the mass-loss rate, Λ the
energy constant, rs the sonic point radius. In Eq. (10), we
neglect the nuclear energy generation, since the wind tem-
perature is too low for it to become significant. It should be
noted that in the limit of Ṁw → 0 and vdv/dr → 0, Eqs. (8-
10) return to Eqs. (1-3) with ϵnuc = 0.

In the wind region, the total luminosity Lr is calcu-
lated from Eq. (4) as well. ∇rad is, however, calculated
without assuming the hydrostatic equilibrium as ∇rad =
3κLr P/(16πaradcr2T4)/(−ρ−1dP/dr) by substituting Eq. (9)
in it. Moreover, in the supersonic region, we neglect the con-
vective energy transport since the velocity of the convective
element should be less than the sound speed and it may not
exceed the energy transport by advection.

2.3 Connecting Wind Envelope to Hydrostatic
Core

In the wind region, the equations (4, 8-10) have five un-
known functions, v(r), ρ(r),T (r), Lr , and Mr , while in the
core region, the equations (1-4) have four (since v(r) = 0). A
wind solution that is smoothly connected to a core solution
can be obtained by providing five boundary conditions: two
of them at the core center, other two at the sonic point, and
the last one at the photosphere.

First, at the core center, the luminosity and enclosed
mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (11)

Therefore, we can obtain one core solution, if we give the
values of density and temperature at the core center, ρc and
Tc.

Second, the following regularity conditions should be
satisfied at the sonic point. By substituting Eqs. (5) and (8)
into Eq. (9), it is rewritten as

1
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(∂P/∂ρ)T is the isothermal sound speed. We
can see from Eq. (12) that the sonic point is the singular
point of the equation. A transonic wind solution can be
obtained by requiring that the numerator of the equation
vanishes at the sonic point and that the velocity gradient
become finite there (Lamers & Cassinelli 1999). From these

regularity conditions, we can evaluate dT/dr (so do the ra-
diative luminosity) and the wind velocity at the sonic point,
for the given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass there
with the total mass of a star, M∗, since the total mass in the
supersonic region must be much less than that. To summa-
rize, the following two boundary conditions are set at the
sonic point:

v(rs) = cT(ρs,Ts) and Lrad(rs) = Lrad(rs, ρs,Ts) at M (rs) = M∗.
(13)

It should be noted that once the values of rs, ρs, and Ts are
specified, we can obtain one wind solution. This is because,
for a given set of (rs, ρs,Ts), Ṁw and Λ can be evaluated
from Eqs. (8) and (10), respectively, and the velocity gradi-
ent at the sonic point by using the de l’Hopital rule to Eq.
(12) (Lamers & Cassinelli 1999; Nugis & Lamers 2002).

Finally, at the photospheric radius (rph), where the ef-

fective temperature Teff ≡ (Lrad/4πr2σSB)1/4 with σSB the
Stefan-Boltzman constant becomes equal to the local tem-
perature, we require that the opacity-like variable τ ≡ κρr
takes a value as close to 3 as possible (Kato & Iben 1992;
Kato & Hachisu 1994). Therefore, the boundary condition
at the photosphere are represented as

Teff = T (rph) and τ(rph) ≃ 3. (14)

The values of the five parameters, ρc, Tc, rs, ρs, and
Ts, are determined iteratively so that the wind solution is
smoothly connected to the hydrostatic core at some radius
rm between the core center and the sonic point. Here, we
choose rm at the radius where the temperature becomes
around 108 K, i.e., T (rm) ≃ 108 K. We first fix the value of
ρs and iteratively determine the values of ρc, Tc, rs, and Ts
so that the enclosed mass, density, and temperature should
be continuous, and the total luminosity should be conserved
at the matching radius rm:

Mcore(rm) = Mwind(rm),
ρcore(rm) = ρwind(rm), (15)

Tcore(rm) = Twind(rm),

Lcore(rm) = Lwind(rm)
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Next, ρs is determined so that the wind solution satisfies the
photospheric condition Eq. (14). Hence, we have obtained a
self-consistent W-R model.

2.4 Models

Chemical Composition

In this paper, we consider two types of W-R models, WN
models and WC models. Since we consider H-free W-R mod-
els, the mass fraction of H is set to zero, X = 0, in both mod-
els. The mass fraction of He, Y , is calculated from Y = 1− Z̃,
where Z̃ is the mass fraction of metals heavier than He. In
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core region, the equations (1-4) have four (since v(r) = 0). A
wind solution that is smoothly connected to a core solution
can be obtained by providing five boundary conditions: two
of them at the core center, other two at the sonic point, and
the last one at the photosphere.

First, at the core center, the luminosity and enclosed
mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (11)

Therefore, we can obtain one core solution, if we give the
values of density and temperature at the core center, ρc and
Tc.

Second, the following regularity conditions should be
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(∂P/∂ρ)T is the isothermal sound speed. We
can see from Eq. (12) that the sonic point is the singular
point of the equation. A transonic wind solution can be
obtained by requiring that the numerator of the equation
vanishes at the sonic point and that the velocity gradient
become finite there (Lamers & Cassinelli 1999). From these

regularity conditions, we can evaluate dT/dr (so do the ra-
diative luminosity) and the wind velocity at the sonic point,
for the given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass there
with the total mass of a star, M∗, since the total mass in the
supersonic region must be much less than that. To summa-
rize, the following two boundary conditions are set at the
sonic point:

v(rs) = cT(ρs,Ts) and Lrad(rs) = Lrad(rs, ρs,Ts) at M (rs) = M∗.
(13)

It should be noted that once the values of rs, ρs, and Ts are
specified, we can obtain one wind solution. This is because,
for a given set of (rs, ρs,Ts), Ṁw and Λ can be evaluated
from Eqs. (8) and (10), respectively, and the velocity gradi-
ent at the sonic point by using the de l’Hopital rule to Eq.
(12) (Lamers & Cassinelli 1999; Nugis & Lamers 2002).

Finally, at the photospheric radius (rph), where the ef-

fective temperature Teff ≡ (Lrad/4πr2σSB)1/4 with σSB the
Stefan-Boltzman constant becomes equal to the local tem-
perature, we require that the opacity-like variable τ ≡ κρr
takes a value as close to 3 as possible (Kato & Iben 1992;
Kato & Hachisu 1994). Therefore, the boundary condition
at the photosphere are represented as

Teff = T (rph) and τ(rph) ≃ 3. (14)

The values of the five parameters, ρc, Tc, rs, ρs, and
Ts, are determined iteratively so that the wind solution is
smoothly connected to the hydrostatic core at some radius
rm between the core center and the sonic point. Here, we
choose rm at the radius where the temperature becomes
around 108 K, i.e., T (rm) ≃ 108 K. We first fix the value of
ρs and iteratively determine the values of ρc, Tc, rs, and Ts
so that the enclosed mass, density, and temperature should
be continuous, and the total luminosity should be conserved
at the matching radius rm:

Mcore(rm) = Mwind(rm),
ρcore(rm) = ρwind(rm), (15)
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Next, ρs is determined so that the wind solution satisfies the
photospheric condition Eq. (14). Hence, we have obtained a
self-consistent W-R model.

2.4 Models

Chemical Composition

In this paper, we consider two types of W-R models, WN
models and WC models. Since we consider H-free W-R mod-
els, the mass fraction of H is set to zero, X = 0, in both mod-
els. The mass fraction of He, Y , is calculated from Y = 1− Z̃,
where Z̃ is the mass fraction of metals heavier than He. In
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ABSTRACT
Wolf-Rayet (W-R) stars are evolved massive stars that is in the core He burning
phase and that lose their hydrogen-rich envelope by radiation driven wind. Owing to
the dense wind, radiative acceleration in the optically thick region may be important
to understand the driving mechanism. In this paper, we construct W-R star models
with various masses, chemical composition, and wind clumping, by modeling them
as He star enshrouded in optically thick wind. We find that W-R winds could be
launched by optically thick wind when either the stellar mass, metallicity, or clumping
factor is large. This implies that opacity enhancement by spectral lines should be
important in the supersonic region to lift the dense winds to have terminal velocity that
exceeds the escape velocity. We also find that the following proportionality relation
holds in the optically thick wind Ṁw ∝ L∗ Z0.5, which is consistent with the empirical
correlation derived from the least-square fitting of observed values. This implies that
radiative acceleration in the optically thick region may drive W-R winds, since the
stellar structures within the sonic radius is determined independently of the wind
clumping in the supersonic region.

Key words: stars: Wolf-Rayet – stars: mass-loss – stars: winds, outflows

1 INTRODUCTION

Wolf-Rayet (W-R) stars are evolved massive stars that show
strong and broad emission lines in their spectra. These fea-
tures indicate that they are enshrouded in dense circumstel-
lar medium (CSM) that is expanding at high speed. The
dense CSM is produced by powerful stellar winds whose
mass-loss rates and terminal velocities are observationally
determined in the range Ṁw ∼ 10−5-10−4 M⊙ yr−1 and
v∞ ∼ 1000-3000 km s−1, respectively (Hamann et al. 2006;
Sander et al. 2012).

W-R stars are classified into the three subtypes: WN 1

subtypes showing the strong lines of helium (He) and nitro-
gen (N) and WC/WO showing the lines of He, carbon (C)
and oxygen (O) (e.g., Crowther 2007). These lines imply that
the products of CNO cycle or triple-α reaction appear at the
surface of WN or WC/WO stars owing to the strong mass
loss. WN or WC/WO stars are the plausible candidates of

⋆ E-mail: nakauchi@astr.tohoku.ac.jp
1 WN is further divided into two subtypes: early and late types.
The former is hydrogen (H) deficient, while the latter contains a
substantial amount of H. In this paper, we focus only on the early
type.

the progenitors of Type Ib supernovae (SNe) or Type Ic SNe
and even long gamma-ray bursts (LGRBs; Heger et al. 2003;
Woosley 1993).

Mass loss has a great impact on the evolutionary path
and final fate of massive stars (Heger et al. 2003). Especially,
after the LIGO detection of GW150914, the nature of the
progenitor stars of the massive black hole binary (∼ 30 M⊙)
has been actively studied (Abbott et al. 2016). The ini-
tial mass and metallicity of a progenitor star differs dras-
tically depending on the treatment of mass loss in massive
stars (Kinugawa et al. 2014; Belczynski et al. 2016). Since it
is rather uncertain, more complete understanding about the
mass loss is needed.

W-R stars are usually modeled by chemically homoge-
neous He stars (Langer 1989). The structure of the wind
acceleration region, however, still remains unclear since the
sonic point is covered by the dense and optically thick
wind. It is problematic that the radius theoretically pre-
dicted from a hydrostatic He star model is smaller by up
to an order of magnitude compared to that determined ob-
servationally using a sophisticated atmospheric model (e.g.,
Crowther 2007). Hence, most of the observedW-R stars have
cooler temperatures compared to He main sequence (MS)
stars (Hamann et al. 2006; Sander et al. 2012).

© 2017 The Authors
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3) 定常の条件はよいかどうか？ Mbelow/Ṁw > Mup/Ṁw を満たすか？ ここで，
Mbelow(Mup)は r∗ ≤ r ≤ rc (rc ≤ r ≤ rph)に含まれる質量．定常流ならば，r < rcの
部分は物質流の供給源であって欲しい．

1.2 Boundary Conditions

Eq. (6)の特異点で満たされるべき条件は，

v2c −
R
µ
Tc = 0, (7)
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c =
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2Tc
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)
/(1 + B), B =
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3

µ

R
T 3
c

ρc
(8)

ここで，T ′
c ≡ dT

dr

∣∣
c
.

Tc, rc, ρcを与えると，特異点での条件により vc, T ′
cが評価できる．また，Eqs. (??),

(3)より Ṁw and Λが評価できる．
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. これにより，臨界点から内外方向に数値的に積分が行える．
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2.2 Optically Thick Wind Envelope

The basic equations to construct an optically thick wind
solution are given below. Note that our formulation is valid
as long as the wind is optically thick (e.g., Żytkow 1972;
Kato & Iben 1992).

Ṁw ≡ 4πr2ρv = const., dMr

dr
= 4πr2ρ, (8)

v
dv
dr
+

1
ρ

dP
dr
+

GMr

r2 = 0, (9)

Λ ≡ Lr + Ṁw

(
v2

2 +
5RT
2µ +

4aradT4

3ρ +

∫ r

rs

GMr

r2 dr
)
= const.,

(10)

where v is the wind velocity, Ṁw the mass-loss rate, Λ the
energy constant, rs the sonic point radius. In Eq. (10), we
neglect the nuclear energy generation, since the wind tem-
perature is too low for it to become significant. It should be
noted that in the limit of Ṁw → 0 and vdv/dr → 0, Eqs. (8-
10) return to Eqs. (1-3) with ϵnuc = 0.

In the wind region, the total luminosity Lr is calcu-
lated from Eq. (4) as well. ∇rad is, however, calculated
without assuming the hydrostatic equilibrium as ∇rad =
3κLr P/(16πaradcr2T4)/(−ρ−1dP/dr) by substituting Eq. (9)
in it. Moreover, in the supersonic region, we neglect the con-
vective energy transport since the velocity of the convective
element should be less than the sound speed and it may not
exceed the energy transport by advection.

2.3 Connecting Wind Envelope to Hydrostatic
Core

In the wind region, the equations (4, 8-10) have five un-
known functions, v(r), ρ(r),T (r), Lr , and Mr , while in the
core region, the equations (1-4) have four (since v(r) = 0). A
wind solution that is smoothly connected to a core solution
can be obtained by providing five boundary conditions: two
of them at the core center, other two at the sonic point, and
the last one at the photosphere.

First, at the core center, the luminosity and enclosed
mass should become zero:

Lr = 0 and Mr = 0 at r = 0. (11)

Therefore, we can obtain one core solution, if we give the
values of density and temperature at the core center, ρc and
Tc.

Second, the following regularity conditions should be
satisfied at the sonic point. By substituting Eqs. (5) and (8)
into Eq. (9), it is rewritten as

1
v

dv
dr
=

⎡⎢⎢⎢⎢⎣
2
r

c2
T −

1
ρ

(
∂P
∂T

)

ρ

dT
dr
− GMr

r2

⎤⎥⎥⎥⎥⎦ /
(
v2 − c2

T
)
, (12)

where cT =
√

(∂P/∂ρ)T is the isothermal sound speed. We
can see from Eq. (12) that the sonic point is the singular
point of the equation. A transonic wind solution can be
obtained by requiring that the numerator of the equation
vanishes at the sonic point and that the velocity gradient
become finite there (Lamers & Cassinelli 1999). From these

regularity conditions, we can evaluate dT/dr (so do the ra-
diative luminosity) and the wind velocity at the sonic point,
for the given values of the radius, density, and temperature
there, rs, ρs, and Ts. We also equate the enclosed mass there
with the total mass of a star, M∗, since the total mass in the
supersonic region must be much less than that. To summa-
rize, the following two boundary conditions are set at the
sonic point:

v(rs) = cT(ρs,Ts) and Lrad(rs) = Lrad(rs, ρs,Ts) at M (rs) = M∗.
(13)

It should be noted that once the values of rs, ρs, and Ts are
specified, we can obtain one wind solution. This is because,
for a given set of (rs, ρs,Ts), Ṁw and Λ can be evaluated
from Eqs. (8) and (10), respectively, and the velocity gradi-
ent at the sonic point by using the de l’Hopital rule to Eq.
(12) (Lamers & Cassinelli 1999; Nugis & Lamers 2002).

Finally, at the photospheric radius (rph), where the ef-

fective temperature Teff ≡ (Lrad/4πr2σSB)1/4 with σSB the
Stefan-Boltzman constant becomes equal to the local tem-
perature, we require that the opacity-like variable τ ≡ κρr
takes a value as close to 3 as possible (Kato & Iben 1992;
Kato & Hachisu 1994). Therefore, the boundary condition
at the photosphere are represented as

Teff = T (rph) and τ(rph) ≃ 3. (14)

The values of the five parameters, ρc, Tc, rs, ρs, and
Ts, are determined iteratively so that the wind solution is
smoothly connected to the hydrostatic core at some radius
rm between the core center and the sonic point. Here, we
choose rm at the radius where the temperature becomes
around 108 K, i.e., T (rm) ≃ 108 K. We first fix the value of
ρs and iteratively determine the values of ρc, Tc, rs, and Ts
so that the enclosed mass, density, and temperature should
be continuous, and the total luminosity should be conserved
at the matching radius rm:

Mcore(rm) = Mwind(rm),
ρcore(rm) = ρwind(rm), (15)

Tcore(rm) = Twind(rm),

Lcore(rm) = Lwind(rm)

+ Ṁw '
(
v2(rm)

2 +
5R
2µTwind(rm) +

4arad
3

T4
wind(rm)
ρwind(rm)

)
*

= Λ + Ṁw

∫ rs

rm

GMr

r2 dr . (16)

Next, ρs is determined so that the wind solution satisfies the
photospheric condition Eq. (18). Hence, we have obtained a
self-consistent W-R model.

2.4 Models

Chemical Composition

In this paper, we consider two types of W-R models, WN
models and WC models. Since we consider H-free W-R mod-
els, the mass fraction of H is set to zero, X = 0, in both mod-
els. The mass fraction of He, Y , is calculated from Y = 1− Z̃,
where Z̃ is the mass fraction of metals heavier than He. In
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WN models, we suppose that Z̃ is identical with the metal-
licity Z in solar composition (Grevesse & Noels 1993), while
in WC models, the mass fractions of C and O are enhanced
by dXC = 0.4 and dXO = 0.1, i.e., Z̃ = Z + dXC + dXO. In each
model, we consider three different metallicities of Z = 1, 2,
and 4 Z⊙ with Z⊙ = 0.02 the solar metallicity.

Wind Clumping

According to the detailed modeling of WR atmo-
sphere with radiation hydrodynamics, wind clumping
is considered to be indispensable for reproducing the
SED (Hamann & Koesterke 1998). We include this effect
by mimicking the functional form used in Hillier & Miller
(1999). The clump is optically thin and its volume filling
factor fV is

fV(r) = D−1 + (1 − D−1) exp
(
− v(r) − vcl

vcl

)
, v(r) ≥ vcl. (17)

where D is the clumping factor and we fix vcl = 200 km s−1 in
this paper (Hillier & Miller 1999). At v(r) ≥ vcl, the opacity
is modified as κ(ρ,T ) → κ(ρ/ fV,T ) (Gräfener et al. 2012).

We also consider the case of vcl = 1.1v(rs) ≃ v(rs). In this
case, wind clumping and the opacity enhancement become
effective in the entire supersonic region.

T (105 K)

Teff = T (rph) τ(rph) = 3 vcl ≃ v(rs) D = 100 ρcl = fclρ (18)

dLr

dr
= 4πr2ρϵnuc, fV ≡ Vcl/V ρcl = (V/Vcl)ρ = f −1

V ρ (19)

Ṁw,NL ∝ L1.29
∗ Y1.7Z0.5 (20)

3 RESULTS

3.1 WN Models without Wind Clumping

First, we show the stellar structure of a WN model with
M∗ = 48 M⊙, Z = 1 Z⊙, and D = 1 (Figure 1). In this model,
the matching point and the sonic point (filled circle) are lo-
cated at rm ≃ 1 R⊙ and rs ≃ 2.5 R⊙, respectively. While the
wind velocity is sufficiently subsonic (v ! 1 cm s−1) around
the matching radius, it is steeply accelerated to a supersonic
speed at the sonic radius (panel a). It finally reaches a con-
stant speed of v∞ ∼ 8 × 107 cm s−1, which is smaller than
the observed wind velocity of WN stars by a factor of a
few (Hamann et al. 2006). In our formulation, the mass-loss
rate is determined uniquely as an eigenvalue of the equa-
tions. In this model, we find Ṁw ≃ 10−4 M⊙ yr−1, which
corresponds to the high end of the observed mass-loss rates.

The density and temperature profiles show rapid decline
around rs (panels b and c). In the supersonic region, density
decreases inversely proportional to the square of radius, ρ ∝
r−2, since the wind velocity is almost constant there. We find
that the radiation pressure dominates the gas pressure over
the supersonic region, while they are almost the same order
of magnitude in the hydrostatic core and subsonic wind.

The luminosity is almost constant (Lph ≃ 1.7 × 106 L⊙)
throughout the wind envelope (panel d). According to the
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Figure 1. Stellar structures of a WN model with M∗ = 48 M⊙,
Z = 1 Z⊙, and D = 1. In each panel, the filled circle shows the
location of the sonic point. Panel a): The velocity structure of
the wind. The purple line shows the wind velocity, the green
line isothermal sound speed, and the grey-shaded region where
v(r ) ≥ vesc (r ) holds. Panel b): The density profile. Panel c): The
temperature profile. Panel d): The luminosity structure. The pur-
ple line shows the total luminosity and the green one the local
Eddington luminosity.
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Figure 2. The opacity structure in the wind envelope of the WN
model with M∗ = 48 M⊙, Z = 1 Z⊙, and D = 1.

mass-luminosity relation obtained from the hydrostatic W-R
models (Langer 1989; Schaerer & Maeder 1992):

log
(

L∗
L⊙

)
= 3.03 + 2.70 log

(
M∗
M⊙

)
− 0.46

(
log

(
M∗
M⊙

))2
, (21)

the stellar luminosity is evaluated as L∗ ≃ 1.85×106 L⊙ with
M∗ = 48 M⊙, which is consistent with our result.

For wind acceleration, the presence of the super-
Eddington layer becomes a key. While the luminosity is
sub-Eddington in the subsonic region, it turns into super-
Eddington beyond the sonic point. At r ∼ 4 R⊙, however, it
returns to sub-Eddington again. Around this point, the wind
acceleration stops and the wind velocity begins to decrease
gradually. The super-Eddington layer is induced by the iron
opacity bump at T ≃ 2 × 105 K, which can be confirmed
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WN models, we suppose that Z̃ is identical with the metal-
licity Z in solar composition (Grevesse & Noels 1993), while
in WC models, the mass fractions of C and O are enhanced
by dXC = 0.4 and dXO = 0.1, i.e., Z̃ = Z + dXC + dXO. In each
model, we consider three different metallicities of Z = 1, 2,
and 4 Z⊙ with Z⊙ = 0.02 the solar metallicity.

Wind Clumping

According to the detailed modeling of WR atmo-
sphere with radiation hydrodynamics, wind clumping
is considered to be indispensable for reproducing the
SED (Hamann & Koesterke 1998). We include this effect
by mimicking the functional form used in Hillier & Miller
(1999). The clump is optically thin and its volume filling
factor fV is

fV(r) = D−1 + (1 − D−1) exp
(
− v(r) − vcl

vcl

)
, v(r) ≥ vcl. (17)

where D is the clumping factor and we fix vcl = 200 km s−1 in
this paper (Hillier & Miller 1999). At v(r) ≥ vcl, the opacity
is modified as κ(ρ,T ) → κ(ρ/ fV,T ) (Gräfener et al. 2012).

We also consider the case of vcl = 1.1v(rs) ≃ v(rs). In this
case, wind clumping and the opacity enhancement become
effective in the entire supersonic region.

T (105 K)

Teff = T (rph) τ(rph) = 3 vcl ≃ v(rs) D = 100 ρcl = fclρ (18)

dLr

dr
= 4πr2ρϵnuc, fV ≡ Vcl/V ρcl = (V/Vcl)ρ = f −1

V ρ (19)

Ṁw,NL ∝ L1.29
∗ Y1.7Z0.5 (20)

3 RESULTS

3.1 WN Models without Wind Clumping

First, we show the stellar structure of a WN model with
M∗ = 48 M⊙, Z = 1 Z⊙, and D = 1 (Figure 1). In this model,
the matching point and the sonic point (filled circle) are lo-
cated at rm ≃ 1 R⊙ and rs ≃ 2.5 R⊙, respectively. While the
wind velocity is sufficiently subsonic (v ! 1 cm s−1) around
the matching radius, it is steeply accelerated to a supersonic
speed at the sonic radius (panel a). It finally reaches a con-
stant speed of v∞ ∼ 8 × 107 cm s−1, which is smaller than
the observed wind velocity of WN stars by a factor of a
few (Hamann et al. 2006). In our formulation, the mass-loss
rate is determined uniquely as an eigenvalue of the equa-
tions. In this model, we find Ṁw ≃ 10−4 M⊙ yr−1, which
corresponds to the high end of the observed mass-loss rates.

The density and temperature profiles show rapid decline
around rs (panels b and c). In the supersonic region, density
decreases inversely proportional to the square of radius, ρ ∝
r−2, since the wind velocity is almost constant there. We find
that the radiation pressure dominates the gas pressure over
the supersonic region, while they are almost the same order
of magnitude in the hydrostatic core and subsonic wind.

The luminosity is almost constant (Lph ≃ 1.7 × 106 L⊙)
throughout the wind envelope (panel d). According to the
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Figure 1. Stellar structures of a WN model with M∗ = 48 M⊙,
Z = 1 Z⊙, and D = 1. In each panel, the filled circle shows the
location of the sonic point. Panel a): The velocity structure of
the wind. The purple line shows the wind velocity, the green
line isothermal sound speed, and the grey-shaded region where
v(r ) ≥ vesc (r ) holds. Panel b): The density profile. Panel c): The
temperature profile. Panel d): The luminosity structure. The pur-
ple line shows the total luminosity and the green one the local
Eddington luminosity.
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Figure 2. The opacity structure in the wind envelope of the WN
model with M∗ = 48 M⊙, Z = 1 Z⊙, and D = 1.

mass-luminosity relation obtained from the hydrostatic W-R
models (Langer 1989; Schaerer & Maeder 1992):

log
(

L∗
L⊙

)
= 3.03 + 2.70 log

(
M∗
M⊙

)
− 0.46

(
log

(
M∗
M⊙

))2
, (21)

the stellar luminosity is evaluated as L∗ ≃ 1.85×106 L⊙ with
M∗ = 48 M⊙, which is consistent with our result.

For wind acceleration, the presence of the super-
Eddington layer becomes a key. While the luminosity is
sub-Eddington in the subsonic region, it turns into super-
Eddington beyond the sonic point. At r ∼ 4 R⊙, however, it
returns to sub-Eddington again. Around this point, the wind
acceleration stops and the wind velocity begins to decrease
gradually. The super-Eddington layer is induced by the iron
opacity bump at T ≃ 2 × 105 K, which can be confirmed
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WN models, we suppose that Z̃ is identical with the metal-
licity Z in solar composition (Grevesse & Noels 1993), while
in WC models, the mass fractions of C and O are enhanced
by dXC = 0.4 and dXO = 0.1, i.e., Z̃ = Z + dXC + dXO. In each
model, we consider three different metallicities of Z = 1, 2,
and 4 Z⊙ with Z⊙ = 0.02 the solar metallicity.

Wind Clumping

According to the detailed modeling of WR atmo-
sphere with radiation hydrodynamics, wind clumping
is considered to be indispensable for reproducing the
SED (Hamann & Koesterke 1998). We include this effect
by mimicking the functional form used in Hillier & Miller
(1999). The clump is optically thin and its volume filling
factor fV is

fV(r) = D−1 + (1 − D−1) exp
(
− v(r) − vcl

vcl

)
, v(r) ≥ vcl. (17)

where D is the clumping factor and we fix vcl = 200 km s−1 in
this paper (Hillier & Miller 1999). At v(r) ≥ vcl, the opacity
is modified as κ(ρ,T ) → κ(ρ/ fV,T ) (Gräfener et al. 2012).

We also consider the case of vcl = 1.1v(rs) ≃ v(rs). In this
case, wind clumping and the opacity enhancement become
effective in the entire supersonic region.

T (105 K)

Teff = T (rph) τ(rph) = 3 vcl ≃ v(rs) D = 100 ρcl = fclρ (18)

dLr

dr
= 4πr2ρϵnuc, fV ≡ Vcl/V ρcl = (V/Vcl)ρ = f −1

V ρ (19)

Ṁw,NL ∝ L1.29
∗ Y1.7Z0.5 (20)

3 RESULTS

3.1 WN Models without Wind Clumping

First, we show the stellar structure of a WN model with
M∗ = 48 M⊙, Z = 1 Z⊙, and D = 1 (Figure 1). In this model,
the matching point and the sonic point (filled circle) are lo-
cated at rm ≃ 1 R⊙ and rs ≃ 2.5 R⊙, respectively. While the
wind velocity is sufficiently subsonic (v ! 1 cm s−1) around
the matching radius, it is steeply accelerated to a supersonic
speed at the sonic radius (panel a). It finally reaches a con-
stant speed of v∞ ∼ 8 × 107 cm s−1, which is smaller than
the observed wind velocity of WN stars by a factor of a
few (Hamann et al. 2006). In our formulation, the mass-loss
rate is determined uniquely as an eigenvalue of the equa-
tions. In this model, we find Ṁw ≃ 10−4 M⊙ yr−1, which
corresponds to the high end of the observed mass-loss rates.

The density and temperature profiles show rapid decline
around rs (panels b and c). In the supersonic region, density
decreases inversely proportional to the square of radius, ρ ∝
r−2, since the wind velocity is almost constant there. We find
that the radiation pressure dominates the gas pressure over
the supersonic region, while they are almost the same order
of magnitude in the hydrostatic core and subsonic wind.

The luminosity is almost constant (Lph ≃ 1.7 × 106 L⊙)
throughout the wind envelope (panel d). According to the
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Figure 1. Stellar structures of a WN model with M∗ = 48 M⊙,
Z = 1 Z⊙, and D = 1. In each panel, the filled circle shows the
location of the sonic point. Panel a): The velocity structure of
the wind. The purple line shows the wind velocity, the green
line isothermal sound speed, and the grey-shaded region where
v(r ) ≥ vesc (r ) holds. Panel b): The density profile. Panel c): The
temperature profile. Panel d): The luminosity structure. The pur-
ple line shows the total luminosity and the green one the local
Eddington luminosity.
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Figure 2. The opacity structure in the wind envelope of the WN
model with M∗ = 48 M⊙, Z = 1 Z⊙, and D = 1.

mass-luminosity relation obtained from the hydrostatic W-R
models (Langer 1989; Schaerer & Maeder 1992):

log
(

L∗
L⊙

)
= 3.03 + 2.70 log

(
M∗
M⊙

)
− 0.46

(
log

(
M∗
M⊙

))2
, (21)

the stellar luminosity is evaluated as L∗ ≃ 1.85×106 L⊙ with
M∗ = 48 M⊙, which is consistent with our result.

For wind acceleration, the presence of the super-
Eddington layer becomes a key. While the luminosity is
sub-Eddington in the subsonic region, it turns into super-
Eddington beyond the sonic point. At r ∼ 4 R⊙, however, it
returns to sub-Eddington again. Around this point, the wind
acceleration stops and the wind velocity begins to decrease
gradually. The super-Eddington layer is induced by the iron
opacity bump at T ≃ 2 × 105 K, which can be confirmed
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WN models, we suppose that Z̃ is identical with the metal-
licity Z in solar composition (Grevesse & Noels 1993), while
in WC models, the mass fractions of C and O are enhanced
by dXC = 0.4 and dXO = 0.1, i.e., Z̃ = Z + dXC + dXO. In each
model, we consider three different metallicities of Z = 1, 2,
and 4 Z⊙ with Z⊙ = 0.02 the solar metallicity.

Wind Clumping

Spectroscopic observations suggest that the winds of O stars
and W-R stars are inhomogeneous and clumpy. One evi-
dence is that a number of emission subpeaks are superposed
on the broad emission lines, and they move from the line
center to the line edge in a few hours. This feature is mod-
eled by clumps propagating radially through the line emis-
sion regions (Moffat et al. 1988; Lépine & Moffat 1999). The
clumped wind model is also favored to reproduce the ob-
served ratio of the line strength to that of the electron scat-
tering wing (Hillier 1991). It is often underestimated in the
smooth wind model.

Theoretically, line-driven wind is unstable against ra-
dial velocity fluctuation so that it grows to form shocks
and inhomogeneity in the supersonic region(Owocki?). Even
in the subsonic region, inhomogeneity can be produced by
strange-mode instability or radiation hydrodynamical insta-
bilities(Saio, Blaes, Jiang).

In this paper, the wind clumping is treated by
the simple filling factor approach that is often used
in the sophisticated wind models of O stars and W-R
stars (Hamann & Koesterke 1998). There, we suppose that
the wind medium is composed of clumps and voids, and that
the former occupies a volume fraction of fV. Then the den-
sity of each clump is larger than the mean density ρ by a fac-
tor of f −1

V , i.e., ρcl = f −1
V ρ. Moreover, if we assume that each

clump is optically thin (microclumping), the mean opacity
in the wind is evaluated as κ( f −1

V ρ,T ) (Gräfener et al. 2012).
Hence, the opacity in the clumped wind can be enhanced in
the regions where it depends on density, compared to the
smooth wind case. Referring to Hillier & Miller (1999), the
radial variation of fV(r) is assumed so that the density in
the clump is enhanced by a factor of D compared to the
mean value, if the wind velocity exceeds a threshold value
vcl:

fV(r) = D−1 + (1 − D−1) exp
(
− v(r) − vcl

vcl

)
, v(r) ≥ vcl. (17)

We consider two cases for vcl: vcl = 200 km s−1 and vcl =
1.1v(rs) ≃ v(rs), in order to examine how they affect the
structures in the supersonic region.

fV = D−1 κ(Dρ,T ) ρcl = f −1
V ρ ≡ Dρ ρcl = Dρ (18)

3 RESULTS

3.1 WN Models without Wind Clumping

First, we show the stellar structure of a WN model with
M∗ = 48 M⊙, Z = 1 Z⊙, and D = 1 (Figure 1). In this model,
the matching point and the sonic point (filled circle) are lo-
cated at rm ≃ 1 R⊙ and rs ≃ 2.5 R⊙, respectively. While the
wind velocity is sufficiently subsonic (v ! 1 cm s−1) around
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Figure 1. Stellar structures of a WN model with M∗ = 48 M⊙,
Z = 1 Z⊙, and D = 1. In each panel, the filled circle shows the
location of the sonic point. Panel a): The velocity structure of
the wind. The purple line shows the wind velocity, the green
line isothermal sound speed, and the grey-shaded region where
v(r ) ≥ vesc (r ) holds. Panel b): The density profile. Panel c): The
temperature profile. Panel d): The luminosity structure. The pur-
ple line shows the total luminosity and the green one the local
Eddington luminosity.

the matching radius, it is steeply accelerated to a supersonic
speed at the sonic radius (panel a). It finally reaches a con-
stant speed of v∞ ∼ 8 × 107 cm s−1, which is smaller than
the observed wind velocity of WN stars by a factor of a
few (Hamann et al. 2006). In our formulation, the mass-loss
rate is determined uniquely as an eigenvalue of the equa-
tions. In this model, we find Ṁw ≃ 10−4 M⊙ yr−1, which
corresponds to the high end of the observed mass-loss rates.

The density and temperature profiles show rapid decline
around rs (panels b and c). In the supersonic region, density
decreases inversely proportional to the square of radius, ρ ∝
r−2, since the wind velocity is almost constant there. We find
that the radiation pressure dominates the gas pressure over
the supersonic region, while they are almost the same order
of magnitude in the hydrostatic core and subsonic wind.

The luminosity is almost constant (Lph ≃ 1.7 × 106 L⊙)
throughout the wind envelope (panel d). According to the
mass-luminosity relation obtained from the hydrostatic W-R
models (Langer 1989; Schaerer & Maeder 1992):

log
(

L∗
L⊙

)
= 3.03 + 2.70 log

(
M∗
M⊙

)
− 0.46

(
log

(
M∗
M⊙

))2
, (19)

the stellar luminosity is evaluated as L∗ ≃ 1.85×106 L⊙ with
M∗ = 48 M⊙, which is consistent with our result.

We can see that the sonic point corresponds to the ra-
dius where the luminosity becomes equal to the local Ed-
dington value. Beyond the sonic point, the luminosity be-
comes super-Eddington, and the wind velocity is accelerated
up to the terminal velocity. At r ∼ 4 R⊙, however, it returns
to a sub-Eddington value again, so that the wind accelera-
tion stops and the wind velocity begins to decrease gradually.
These are caused by the opacity bump at T ≃ 2×105 K, which
is produced by the bound-bound transitions of iron nuclei.
This can be confirmed from Figure 2, which shows the opac-
ity structure in the wind envelope. Hence, we find that the
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WN models, we suppose that Z̃ is identical with the metal-
licity Z in solar composition (Grevesse & Noels 1993), while
in WC models, the mass fractions of C and O are enhanced
by dXC = 0.4 and dXO = 0.1, i.e., Z̃ = Z + dXC + dXO. In each
model, we consider three different metallicities of Z = 1, 2,
and 4 Z⊙ with Z⊙ = 0.02 the solar metallicity.

Wind Clumping

According to the detailed modeling of WR atmo-
sphere with radiation hydrodynamics, wind clumping
is considered to be indispensable for reproducing the
SED (Hamann & Koesterke 1998). We include this effect
by mimicking the functional form used in Hillier & Miller
(1999). The clump is optically thin and its volume filling
factor fV is

fV(r) = D−1 + (1 − D−1) exp
(
− v(r) − vcl

vcl

)
, v(r) ≥ vcl. (17)

where D is the clumping factor and we fix vcl = 200 km s−1 in
this paper (Hillier & Miller 1999). At v(r) ≥ vcl, the opacity
is modified as κ(ρ,T ) → κ( f −1

V ρ,T ) (Gräfener et al. 2012).
We also consider the case of vcl = 1.1v(rs) ≃ v(rs). In this

case, wind clumping and the opacity enhancement become
effective in the entire supersonic region.

fV(r) = D−1 + (1 − D−1) exp
(
− v(r) − vs

vs

)
, v(r) ≥ vs. (18)

T (105 K)

Teff = T (rph) τ(rph) = 3 vcl ≃ v(rs) D = 100 ρcl = fclρ (19)

dLr

dr
= 4πr2ρϵnuc, fV ≡ Vcl/V ρcl = (V/Vcl)ρ = f −1

V ρ D ∼ f −1
V

(20)

Ṁw,NL ∝ L1.29
∗ Y1.7Z0.5 (21)

v
dv
dr
∼ κLrad

4πcr2 v∞ ≃ 2200 km s−1 Ṁw ≃ 10−4 M⊙ yr−1 (22)

3 RESULTS

3.1 WN Models without Wind Clumping

First, we show the stellar structure of a WN model with
M∗ = 48 M⊙, Z = 1 Z⊙, and D = 1 (Figure 1). In this model,
the matching point and the sonic point (filled circle) are lo-
cated at rm ≃ 1 R⊙ and rs ≃ 2.5 R⊙, respectively. While the
wind velocity is sufficiently subsonic (v ! 1 cm s−1) around
the matching radius, it is steeply accelerated to a supersonic
speed at the sonic radius (panel a). It finally reaches a con-
stant speed of v∞ ∼ 8 × 107 cm s−1, which is smaller than
the observed wind velocity of WN stars by a factor of a
few (Hamann et al. 2006). In our formulation, the mass-loss
rate is determined uniquely as an eigenvalue of the equa-
tions. In this model, we find Ṁw ≃ 10−4 M⊙ yr−1, which
corresponds to the high end of the observed mass-loss rates.
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Figure 1. Stellar structures of a WN model with M∗ = 48 M⊙,
Z = 1 Z⊙, and D = 1. In each panel, the filled circle shows the
location of the sonic point. Panel a): The velocity structure of
the wind. The purple line shows the wind velocity, the green
line isothermal sound speed, and the grey-shaded region where
v(r ) ≥ vesc (r ) holds. Panel b): The density profile. Panel c): The
temperature profile. Panel d): The luminosity structure. The pur-
ple line shows the total luminosity and the green one the local
Eddington luminosity.

The density and temperature profiles show rapid decline
around rs (panels b and c). In the supersonic region, density
decreases inversely proportional to the square of radius, ρ ∝
r−2, since the wind velocity is almost constant there. We find
that the radiation pressure dominates the gas pressure over
the supersonic region, while they are almost the same order
of magnitude in the hydrostatic core and subsonic wind.

The luminosity is almost constant (Lph ≃ 1.7 × 106 L⊙)
throughout the wind envelope (panel d). According to the
mass-luminosity relation obtained from the hydrostatic W-R
models (Langer 1989; Schaerer & Maeder 1992):

log
(

L∗
L⊙

)
= 3.03 + 2.70 log

(
M∗
M⊙

)
− 0.46

(
log

(
M∗
M⊙

))2
, (23)

the stellar luminosity is evaluated as L∗ ≃ 1.85×106 L⊙ with
M∗ = 48 M⊙, which is consistent with our result.

For wind acceleration, the presence of the super-
Eddington layer becomes a key. While the luminosity is
sub-Eddington in the subsonic region, it turns into super-
Eddington beyond the sonic point. At r ∼ 4 R⊙, however, it
returns to sub-Eddington again. Around this point, the wind
acceleration stops and the wind velocity begins to decrease
gradually. The super-Eddington layer is induced by the iron
opacity bump at T ≃ 2 × 105 K, which can be confirmed
from Figure 2. We find that wind acceleration is initiated
by iron opacity bump as found in Nugis & Lamers (2002);
Gräfener & Hamann (2005)

We consider, however, that the above model is not ap-
propriate as a steady wind solution. This is because in steady
wind solutions, the velocity at the photosphere should ex-
ceed the local escape velocity:

v(rph) ≥ vesc(rph). (24)

Otherwise, the wind velocity will fall down to a subsonic
speed beyond the photosphere, if it were not for additional
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WN models, we suppose that Z̃ is identical with the metal-
licity Z in solar composition (Grevesse & Noels 1993), while
in WC models, the mass fractions of C and O are enhanced
by dXC = 0.4 and dXO = 0.1, i.e., Z̃ = Z + dXC + dXO. In each
model, we consider three different metallicities of Z = 1, 2,
and 4 Z⊙ with Z⊙ = 0.02 the solar metallicity.

Wind Clumping

According to the detailed modeling of WR atmo-
sphere with radiation hydrodynamics, wind clumping
is considered to be indispensable for reproducing the
SED (Hamann & Koesterke 1998). We include this effect
by mimicking the functional form used in Hillier & Miller
(1999). The clump is optically thin and its volume filling
factor fV is

fV(r) = D−1 + (1 − D−1) exp
(
− v(r) − vcl

vcl

)
, v(r) ≥ vcl. (17)

where D is the clumping factor and we fix vcl = 200 km s−1 in
this paper (Hillier & Miller 1999). At v(r) ≥ vcl, the opacity
is modified as κ(ρ,T ) → κ(ρ/ fV,T ) (Gräfener et al. 2012).

We also consider the case of vcl = 1.1v(rs) ≃ v(rs). In this
case, wind clumping and the opacity enhancement become
effective in the entire supersonic region.

T (105 K)

Teff = T (rph) τ(rph) = 3 vcl ≃ v(rs) D = 100 ρcl = fclρ (18)

dLr

dr
= 4πr2ρϵnuc, fV ≡ Vcl/V ρcl = (V/Vcl)ρ = f −1

V ρ (19)

Ṁw,NL ∝ L1.29
∗ Y1.7Z0.5 (20)

3 RESULTS

3.1 WN Models without Wind Clumping

First, we show the stellar structure of a WN model with
M∗ = 48 M⊙, Z = 1 Z⊙, and D = 1 (Figure 1). In this model,
the matching point and the sonic point (filled circle) are lo-
cated at rm ≃ 1 R⊙ and rs ≃ 2.5 R⊙, respectively. While the
wind velocity is sufficiently subsonic (v ! 1 cm s−1) around
the matching radius, it is steeply accelerated to a supersonic
speed at the sonic radius (panel a). It finally reaches a con-
stant speed of v∞ ∼ 8 × 107 cm s−1, which is smaller than
the observed wind velocity of WN stars by a factor of a
few (Hamann et al. 2006). In our formulation, the mass-loss
rate is determined uniquely as an eigenvalue of the equa-
tions. In this model, we find Ṁw ≃ 10−4 M⊙ yr−1, which
corresponds to the high end of the observed mass-loss rates.

The density and temperature profiles show rapid decline
around rs (panels b and c). In the supersonic region, density
decreases inversely proportional to the square of radius, ρ ∝
r−2, since the wind velocity is almost constant there. We find
that the radiation pressure dominates the gas pressure over
the supersonic region, while they are almost the same order
of magnitude in the hydrostatic core and subsonic wind.

The luminosity is almost constant (Lph ≃ 1.7 × 106 L⊙)
throughout the wind envelope (panel d). According to the

5

6

7

8

0 2.5 5.0

(c)

lo
g 1

0 
T 

(K
)

r (Rsun)
0 2.5 5.0 7.5

1

2

3(d)

L 
(1

06 L s
un

)

r (Rsun)

Lr
LEdd

0

2

4

6

8

(a)lo
g 1

0 
v 

(c
m

 s
-1

)

v
cT -10

-8

-6

-4

-2

0

2

Z = 1 Zsun
M = 48 Msun
D = 1

(b)

lo
g 1

0 
ρ 

(g
 c

m
-3

)

Figure 1. Stellar structures of a WN model with M∗ = 48 M⊙,
Z = 1 Z⊙, and D = 1. In each panel, the filled circle shows the
location of the sonic point. Panel a): The velocity structure of
the wind. The purple line shows the wind velocity, the green
line isothermal sound speed, and the grey-shaded region where
v(r ) ≥ vesc (r ) holds. Panel b): The density profile. Panel c): The
temperature profile. Panel d): The luminosity structure. The pur-
ple line shows the total luminosity and the green one the local
Eddington luminosity.

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

105106107

κ 
[ c

m
2  g

-1
 ]

T [ K ]

Figure 2. The opacity structure in the wind envelope of the WN
model with M∗ = 48 M⊙, Z = 1 Z⊙, and D = 1.

mass-luminosity relation obtained from the hydrostatic W-R
models (Langer 1989; Schaerer & Maeder 1992):

log
(

L∗
L⊙

)
= 3.03 + 2.70 log

(
M∗
M⊙

)
− 0.46

(
log

(
M∗
M⊙

))2
, (21)

the stellar luminosity is evaluated as L∗ ≃ 1.85×106 L⊙ with
M∗ = 48 M⊙, which is consistent with our result.

For wind acceleration, the presence of the super-
Eddington layer becomes a key. While the luminosity is
sub-Eddington in the subsonic region, it turns into super-
Eddington beyond the sonic point. At r ∼ 4 R⊙, however, it
returns to sub-Eddington again. Around this point, the wind
acceleration stops and the wind velocity begins to decrease
gradually. The super-Eddington layer is induced by the iron
opacity bump at T ≃ 2 × 105 K, which can be confirmed
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WN models, we suppose that Z̃ is identical with the metal-
licity Z in solar composition (Grevesse & Noels 1993), while
in WC models, the mass fractions of C and O are enhanced
by dXC = 0.4 and dXO = 0.1, i.e., Z̃ = Z + dXC + dXO. In each
model, we consider three different metallicities of Z = 1, 2,
and 4 Z⊙ with Z⊙ = 0.02 the solar metallicity.

Wind Clumping

Spectroscopic observations suggest that the winds of O stars
and W-R stars are inhomogeneous and clumpy. One evi-
dence is that a number of emission subpeaks are superposed
on the broad emission lines, and they move from the line
center to the line edge in a few hours. This feature is mod-
eled by clumps propagating radially through the line emis-
sion regions (Moffat et al. 1988; Lépine & Moffat 1999). The
clumped wind model is also favored to reproduce the ob-
served ratio of the line strength to that of the electron scat-
tering wing (Hillier 1991). It is often underestimated in the
smooth wind model.

Theoretically, line-driven wind is unstable against ra-
dial velocity fluctuation so that it grows to form shocks
and inhomogeneity in the supersonic region(Owocki?). Even
in the subsonic region, inhomogeneity can be produced by
strange-mode instability or radiation hydrodynamical insta-
bilities(Saio, Blaes, Jiang).

In this paper, the wind clumping is treated by
the simple filling factor approach that is often used
in the sophisticated wind models of O stars and W-R
stars (Hamann & Koesterke 1998). There, we suppose that
the wind medium is composed of clumps and voids, and that
the former occupies a volume fraction of fV. Then the den-
sity of each clump is larger than the mean density ρ by a fac-
tor of f −1

V , i.e., ρcl = f −1
V ρ. Moreover, if we assume that each

clump is optically thin (microclumping), the mean opacity
in the wind is evaluated as κ( f −1

V ρ,T ) (Gräfener et al. 2012).
Hence, the opacity in the clumped wind can be enhanced in
the regions where it depends on density, compared to the
smooth wind case. Referring to Hillier & Miller (1999), the
radial variation of fV(r) is assumed so that the density in
the clump is enhanced by a factor of D compared to the
mean value, if the wind velocity exceeds a threshold value
vcl:

fV(r) = D−1 + (1 − D−1) exp
(
− v(r) − vcl

vcl

)
, v(r) ≥ vcl. (17)

We consider two cases for vcl: vcl = 200 km s−1 and vcl =
1.1v(rs) ≃ v(rs), in order to examine how they affect the
structures in the supersonic region.

fV = D−1 κ(Dρ,T ) ρcl = f −1
V ρ ≡ Dρ ρcl = Dρ (18)

3 RESULTS

3.1 WN Models without Wind Clumping

First, we show the stellar structure of a WN model with
M∗ = 48 M⊙, Z = 1 Z⊙, and D = 1 (Figure 1). In this model,
the matching point and the sonic point (filled circle) are lo-
cated at rm ≃ 1 R⊙ and rs ≃ 2.5 R⊙, respectively. While the
wind velocity is sufficiently subsonic (v ! 1 cm s−1) around
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Figure 1. Stellar structures of a WN model with M∗ = 48 M⊙,
Z = 1 Z⊙, and D = 1. In each panel, the filled circle shows the
location of the sonic point. Panel a): The velocity structure of
the wind. The purple line shows the wind velocity, the green
line isothermal sound speed, and the grey-shaded region where
v(r ) ≥ vesc (r ) holds. Panel b): The density profile. Panel c): The
temperature profile. Panel d): The luminosity structure. The pur-
ple line shows the total luminosity and the green one the local
Eddington luminosity.

the matching radius, it is steeply accelerated to a supersonic
speed at the sonic radius (panel a). It finally reaches a con-
stant speed of v∞ ∼ 8 × 107 cm s−1, which is smaller than
the observed wind velocity of WN stars by a factor of a
few (Hamann et al. 2006). In our formulation, the mass-loss
rate is determined uniquely as an eigenvalue of the equa-
tions. In this model, we find Ṁw ≃ 10−4 M⊙ yr−1, which
corresponds to the high end of the observed mass-loss rates.

The density and temperature profiles show rapid decline
around rs (panels b and c). In the supersonic region, density
decreases inversely proportional to the square of radius, ρ ∝
r−2, since the wind velocity is almost constant there. We find
that the radiation pressure dominates the gas pressure over
the supersonic region, while they are almost the same order
of magnitude in the hydrostatic core and subsonic wind.

The luminosity is almost constant (Lph ≃ 1.7 × 106 L⊙)
throughout the wind envelope (panel d). According to the
mass-luminosity relation obtained from the hydrostatic W-R
models (Langer 1989; Schaerer & Maeder 1992):

log
(

L∗
L⊙

)
= 3.03 + 2.70 log

(
M∗
M⊙

)
− 0.46

(
log

(
M∗
M⊙

))2
, (19)

the stellar luminosity is evaluated as L∗ ≃ 1.85×106 L⊙ with
M∗ = 48 M⊙, which is consistent with our result.

We can see that the sonic point corresponds to the ra-
dius where the luminosity becomes equal to the local Ed-
dington value. Beyond the sonic point, the luminosity be-
comes super-Eddington, and the wind velocity is accelerated
up to the terminal velocity. At r ∼ 4 R⊙, however, it returns
to a sub-Eddington value again, so that the wind accelera-
tion stops and the wind velocity begins to decrease gradually.
These are caused by the opacity bump at T ≃ 2×105 K, which
is produced by the bound-bound transitions of iron nuclei.
This can be confirmed from Figure 2, which shows the opac-
ity structure in the wind envelope. Hence, we find that the
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WN models, we suppose that Z̃ is identical with the metal-
licity Z in solar composition (Grevesse & Noels 1993), while
in WC models, the mass fractions of C and O are enhanced
by dXC = 0.4 and dXO = 0.1, i.e., Z̃ = Z + dXC + dXO. In each
model, we consider three different metallicities of Z = 1, 2,
and 4 Z⊙ with Z⊙ = 0.02 the solar metallicity.

Wind Clumping

Spectroscopic observations suggest that the winds of O stars
and W-R stars are inhomogeneous and clumpy. One evi-
dence is that a number of emission subpeaks are superposed
on the broad emission lines, and they move from the line
center to the line edge in a few hours. This feature is mod-
eled by clumps propagating radially through the line emis-
sion regions (Moffat et al. 1988; Lépine & Moffat 1999). The
clumped wind model is also favored to reproduce the ob-
served ratio of the line strength to that of the electron scat-
tering wing (Hillier 1991). It is often underestimated in the
smooth wind model.

Theoretically, line-driven wind is unstable against ra-
dial velocity fluctuation so that it grows to form shocks
and inhomogeneity in the supersonic region(Owocki?). Even
in the subsonic region, inhomogeneity can be produced by
strange-mode instability or radiation hydrodynamical insta-
bilities(Saio, Blaes, Jiang).

In this paper, the wind clumping is treated by
the simple filling factor approach that is often used
in the sophisticated wind models of O stars and W-R
stars (Hamann & Koesterke 1998). There, we suppose that
the wind medium is composed of clumps and voids, and that
the former occupies a volume fraction of fV. Then the den-
sity of each clump is larger than the mean density ρ by a fac-
tor of f −1

V , i.e., ρcl = f −1
V ρ. Moreover, if we assume that each

clump is optically thin (microclumping), the mean opacity
in the wind is evaluated as κ( f −1

V ρ,T ) (Gräfener et al. 2012).
Hence, the opacity in the clumped wind can be enhanced in
the regions where it depends on density, compared to the
smooth wind case. Referring to Hillier & Miller (1999), the
radial variation of fV(r) is assumed so that the density in
the clump is enhanced by a factor of D compared to the
mean value, if the wind velocity exceeds a threshold value
vcl:

fV(r) = D−1 + (1 − D−1) exp
(
− v(r) − vcl

vcl

)
, v(r) ≥ vcl. (17)

We consider two cases for vcl: vcl = 200 km s−1 and vcl =
1.1v(rs) ≃ v(rs), in order to examine how they affect the
structures in the supersonic region.

fV = D−1 κ(ρ,T ) → κ(Dρ,T ) ρcl = f −1
V ρ ≡ Dρ ρcl = Dρ (18)

3 RESULTS

3.1 WN Models without Wind Clumping

First, we show the stellar structure of a WN model with
M∗ = 48 M⊙, Z = 1 Z⊙, and D = 1 (Figure 1). In this model,
the matching point and the sonic point (filled circle) are lo-
cated at rm ≃ 1 R⊙ and rs ≃ 2.5 R⊙, respectively. While the
wind velocity is sufficiently subsonic (v ! 1 cm s−1) around
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Figure 1. Stellar structures of a WN model with M∗ = 48 M⊙,
Z = 1 Z⊙, and D = 1. In each panel, the filled circle shows the
location of the sonic point. Panel a): The velocity structure of
the wind. The purple line shows the wind velocity, the green
line isothermal sound speed, and the grey-shaded region where
v(r ) ≥ vesc (r ) holds. Panel b): The density profile. Panel c): The
temperature profile. Panel d): The luminosity structure. The pur-
ple line shows the total luminosity and the green one the local
Eddington luminosity.

the matching radius, it is steeply accelerated to a supersonic
speed at the sonic radius (panel a). It finally reaches a con-
stant speed of v∞ ∼ 8 × 107 cm s−1, which is smaller than
the observed wind velocity of WN stars by a factor of a
few (Hamann et al. 2006). In our formulation, the mass-loss
rate is determined uniquely as an eigenvalue of the equa-
tions. In this model, we find Ṁw ≃ 10−4 M⊙ yr−1, which
corresponds to the high end of the observed mass-loss rates.

The density and temperature profiles show rapid decline
around rs (panels b and c). In the supersonic region, density
decreases inversely proportional to the square of radius, ρ ∝
r−2, since the wind velocity is almost constant there. We find
that the radiation pressure dominates the gas pressure over
the supersonic region, while they are almost the same order
of magnitude in the hydrostatic core and subsonic wind.

The luminosity is almost constant (Lph ≃ 1.7 × 106 L⊙)
throughout the wind envelope (panel d). According to the
mass-luminosity relation obtained from the hydrostatic W-R
models (Langer 1989; Schaerer & Maeder 1992):

log
(

L∗
L⊙

)
= 3.03 + 2.70 log

(
M∗
M⊙

)
− 0.46

(
log

(
M∗
M⊙

))2
, (19)

the stellar luminosity is evaluated as L∗ ≃ 1.85×106 L⊙ with
M∗ = 48 M⊙, which is consistent with our result.

We can see that the sonic point corresponds to the ra-
dius where the luminosity becomes equal to the local Ed-
dington value. Beyond the sonic point, the luminosity be-
comes super-Eddington, and the wind velocity is accelerated
up to the terminal velocity. At r ∼ 4 R⊙, however, it returns
to a sub-Eddington value again, so that the wind accelera-
tion stops and the wind velocity begins to decrease gradually.
These are caused by the opacity bump at T ≃ 2×105 K, which
is produced by the bound-bound transitions of iron nuclei.
This can be confirmed from Figure 2, which shows the opac-
ity structure in the wind envelope. Hence, we find that the
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WN models, we suppose that Z̃ is identical with the metal-
licity Z in solar composition (Grevesse & Noels 1993), while
in WC models, the mass fractions of C and O are enhanced
by dXC = 0.4 and dXO = 0.1, i.e., Z̃ = Z + dXC + dXO. In each
model, we consider three different metallicities of Z = 1, 2,
and 4 Z⊙ with Z⊙ = 0.02 the solar metallicity.

Wind Clumping

According to the detailed modeling of WR atmo-
sphere with radiation hydrodynamics, wind clumping
is considered to be indispensable for reproducing the
SED (Hamann & Koesterke 1998). We include this effect
by mimicking the functional form used in Hillier & Miller
(1999). The clump is optically thin and its volume filling
factor fV is

fV(r) = D−1 + (1 − D−1) exp
(
− v(r) − vcl

vcl

)
, v(r) ≥ vcl. (17)

where D is the clumping factor and we fix vcl = 200 km s−1 in
this paper (Hillier & Miller 1999). At v(r) ≥ vcl, the opacity
is modified as κ(ρ,T ) → κ( f −1

V ρ,T ) (Gräfener et al. 2012).
We also consider the case of vcl = 1.1v(rs) ≃ v(rs). In this

case, wind clumping and the opacity enhancement become
effective in the entire supersonic region.

fV(r) = D−1 + (1 − D−1) exp
(
− v(r) − vs
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∗ Y1.7Z0.5 (21)

v
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dr
∼ κLrad

4πcr2 v∞ ≃ 2200 km s−1 Ṁw ≃ 10−4 M⊙ yr−1 (22)

3 RESULTS

3.1 WN Models without Wind Clumping

First, we show the stellar structure of a WN model with
M∗ = 48 M⊙, Z = 1 Z⊙, and D = 1 (Figure 1). In this model,
the matching point and the sonic point (filled circle) are lo-
cated at rm ≃ 1 R⊙ and rs ≃ 2.5 R⊙, respectively. While the
wind velocity is sufficiently subsonic (v ! 1 cm s−1) around
the matching radius, it is steeply accelerated to a supersonic
speed at the sonic radius (panel a). It finally reaches a con-
stant speed of v∞ ∼ 8 × 107 cm s−1, which is smaller than
the observed wind velocity of WN stars by a factor of a
few (Hamann et al. 2006). In our formulation, the mass-loss
rate is determined uniquely as an eigenvalue of the equa-
tions. In this model, we find Ṁw ≃ 10−4 M⊙ yr−1, which
corresponds to the high end of the observed mass-loss rates.
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Figure 1. Stellar structures of a WN model with M∗ = 48 M⊙,
Z = 1 Z⊙, and D = 1. In each panel, the filled circle shows the
location of the sonic point. Panel a): The velocity structure of
the wind. The purple line shows the wind velocity, the green
line isothermal sound speed, and the grey-shaded region where
v(r ) ≥ vesc (r ) holds. Panel b): The density profile. Panel c): The
temperature profile. Panel d): The luminosity structure. The pur-
ple line shows the total luminosity and the green one the local
Eddington luminosity.

The density and temperature profiles show rapid decline
around rs (panels b and c). In the supersonic region, density
decreases inversely proportional to the square of radius, ρ ∝
r−2, since the wind velocity is almost constant there. We find
that the radiation pressure dominates the gas pressure over
the supersonic region, while they are almost the same order
of magnitude in the hydrostatic core and subsonic wind.

The luminosity is almost constant (Lph ≃ 1.7 × 106 L⊙)
throughout the wind envelope (panel d). According to the
mass-luminosity relation obtained from the hydrostatic W-R
models (Langer 1989; Schaerer & Maeder 1992):

log
(

L∗
L⊙

)
= 3.03 + 2.70 log

(
M∗
M⊙

)
− 0.46

(
log

(
M∗
M⊙

))2
, (23)

the stellar luminosity is evaluated as L∗ ≃ 1.85×106 L⊙ with
M∗ = 48 M⊙, which is consistent with our result.

For wind acceleration, the presence of the super-
Eddington layer becomes a key. While the luminosity is
sub-Eddington in the subsonic region, it turns into super-
Eddington beyond the sonic point. At r ∼ 4 R⊙, however, it
returns to sub-Eddington again. Around this point, the wind
acceleration stops and the wind velocity begins to decrease
gradually. The super-Eddington layer is induced by the iron
opacity bump at T ≃ 2 × 105 K, which can be confirmed
from Figure 2. We find that wind acceleration is initiated
by iron opacity bump as found in Nugis & Lamers (2002);
Gräfener & Hamann (2005)

We consider, however, that the above model is not ap-
propriate as a steady wind solution. This is because in steady
wind solutions, the velocity at the photosphere should ex-
ceed the local escape velocity:

v(rph) ≥ vesc(rph). (24)

Otherwise, the wind velocity will fall down to a subsonic
speed beyond the photosphere, if it were not for additional
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WN models, we suppose that Z̃ is identical with the metal-
licity Z in solar composition (Grevesse & Noels 1993), while
in WC models, the mass fractions of C and O are enhanced
by dXC = 0.4 and dXO = 0.1, i.e., Z̃ = Z + dXC + dXO. In each
model, we consider three different metallicities of Z = 1, 2,
and 4 Z⊙ with Z⊙ = 0.02 the solar metallicity.

Wind Clumping

According to the detailed modeling of WR atmo-
sphere with radiation hydrodynamics, wind clumping
is considered to be indispensable for reproducing the
SED (Hamann & Koesterke 1998). We include this effect
by mimicking the functional form used in Hillier & Miller
(1999). The clump is optically thin and its volume filling
factor fV is

fV(r) = D−1 + (1 − D−1) exp
(
− v(r) − vcl

vcl

)
, v(r) ≥ vcl. (17)

where D is the clumping factor and we fix vcl = 200 km s−1 in
this paper (Hillier & Miller 1999). At v(r) ≥ vcl, the opacity
is modified as κ(ρ,T ) → κ( f −1

V ρ,T ) (Gräfener et al. 2012).
We also consider the case of vcl = 1.1v(rs) ≃ v(rs). In this

case, wind clumping and the opacity enhancement become
effective in the entire supersonic region.
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vs
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dLr

dr
= 4πr2ρϵnuc, fV ≡ Vcl/V ρcl = (V/Vcl)ρ = f −1

V ρ D ∼ f −1
V
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Ṁw,NL ∝ L1.29
∗ Y1.7Z0.5 (21)

v
dv
dr
∼ κLrad

4πcr2 v∞ ≃ 2200 km s−1 Ṁw ≃ 10−4 M⊙ yr−1 (22)

3 RESULTS

3.1 WN Models without Wind Clumping

First, we show the stellar structure of a WN model with
M∗ = 48 M⊙, Z = 1 Z⊙, and D = 1 (Figure 1). In this model,
the matching point and the sonic point (filled circle) are lo-
cated at rm ≃ 1 R⊙ and rs ≃ 2.5 R⊙, respectively. While the
wind velocity is sufficiently subsonic (v ! 1 cm s−1) around
the matching radius, it is steeply accelerated to a supersonic
speed at the sonic radius (panel a). It finally reaches a con-
stant speed of v∞ ∼ 8 × 107 cm s−1, which is smaller than
the observed wind velocity of WN stars by a factor of a
few (Hamann et al. 2006). In our formulation, the mass-loss
rate is determined uniquely as an eigenvalue of the equa-
tions. In this model, we find Ṁw ≃ 10−4 M⊙ yr−1, which
corresponds to the high end of the observed mass-loss rates.
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Figure 1. Stellar structures of a WN model with M∗ = 48 M⊙,
Z = 1 Z⊙, and D = 1. In each panel, the filled circle shows the
location of the sonic point. Panel a): The velocity structure of
the wind. The purple line shows the wind velocity, the green
line isothermal sound speed, and the grey-shaded region where
v(r ) ≥ vesc (r ) holds. Panel b): The density profile. Panel c): The
temperature profile. Panel d): The luminosity structure. The pur-
ple line shows the total luminosity and the green one the local
Eddington luminosity.

The density and temperature profiles show rapid decline
around rs (panels b and c). In the supersonic region, density
decreases inversely proportional to the square of radius, ρ ∝
r−2, since the wind velocity is almost constant there. We find
that the radiation pressure dominates the gas pressure over
the supersonic region, while they are almost the same order
of magnitude in the hydrostatic core and subsonic wind.

The luminosity is almost constant (Lph ≃ 1.7 × 106 L⊙)
throughout the wind envelope (panel d). According to the
mass-luminosity relation obtained from the hydrostatic W-R
models (Langer 1989; Schaerer & Maeder 1992):

log
(

L∗
L⊙

)
= 3.03 + 2.70 log

(
M∗
M⊙

)
− 0.46

(
log

(
M∗
M⊙

))2
, (23)

the stellar luminosity is evaluated as L∗ ≃ 1.85×106 L⊙ with
M∗ = 48 M⊙, which is consistent with our result.

For wind acceleration, the presence of the super-
Eddington layer becomes a key. While the luminosity is
sub-Eddington in the subsonic region, it turns into super-
Eddington beyond the sonic point. At r ∼ 4 R⊙, however, it
returns to sub-Eddington again. Around this point, the wind
acceleration stops and the wind velocity begins to decrease
gradually. The super-Eddington layer is induced by the iron
opacity bump at T ≃ 2 × 105 K, which can be confirmed
from Figure 2. We find that wind acceleration is initiated
by iron opacity bump as found in Nugis & Lamers (2002);
Gräfener & Hamann (2005)

We consider, however, that the above model is not ap-
propriate as a steady wind solution. This is because in steady
wind solutions, the velocity at the photosphere should ex-
ceed the local escape velocity:

v(rph) ≥ vesc(rph). (24)

Otherwise, the wind velocity will fall down to a subsonic
speed beyond the photosphere, if it were not for additional
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終端速度が脱出速度を上回るまで 
十分な加速が持続した.
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WN models, we suppose that Z̃ is identical with the metal-
licity Z in solar composition (Grevesse & Noels 1993), while
in WC models, the mass fractions of C and O are enhanced
by dXC = 0.4 and dXO = 0.1, i.e., Z̃ = Z + dXC + dXO. In each
model, we consider three different metallicities of Z = 1, 2,
and 4 Z⊙ with Z⊙ = 0.02 the solar metallicity.

Wind Clumping

According to the detailed modeling of WR atmo-
sphere with radiation hydrodynamics, wind clumping
is considered to be indispensable for reproducing the
SED (Hamann & Koesterke 1998). We include this effect
by mimicking the functional form used in Hillier & Miller
(1999). The clump is optically thin and its volume filling
factor fV is

fV(r) = D−1 + (1 − D−1) exp
(
− v(r) − vcl

vcl

)
, v(r) ≥ vcl. (17)

where D is the clumping factor and we fix vcl = 200 km s−1 in
this paper (Hillier & Miller 1999). At v(r) ≥ vcl, the opacity
is modified as κ(ρ,T ) → κ(ρ/ fV,T ) (Gräfener et al. 2012).

We also consider the case of vcl = 1.1v(rs) ≃ v(rs). In this
case, wind clumping and the opacity enhancement become
effective in the entire supersonic region.

T (105 K)

Teff = T (rph) τ(rph) = 3 vcl ≃ v(rs) D = 100 ρcl = fclρ (18)

dLr

dr
= 4πr2ρϵnuc, (19)

Ṁw,NL ∝ L1.29
∗ Y1.7Z0.5 (20)

3 RESULTS

3.1 WN Models without Wind Clumping

First, we show the stellar structure of a WN model with
M∗ = 48 M⊙, Z = 1 Z⊙, and D = 1 (Figure 1). In this model,
the matching point and the sonic point (filled circle) are lo-
cated at rm ≃ 1 R⊙ and rs ≃ 2.5 R⊙, respectively. While the
wind velocity is sufficiently subsonic (v ! 1 cm s−1) around
the matching radius, it is steeply accelerated to a supersonic
speed at the sonic radius (panel a). It finally reaches a con-
stant speed of v∞ ∼ 8 × 107 cm s−1, which is smaller than
the observed wind velocity of WN stars by a factor of a
few (Hamann et al. 2006). In our formulation, the mass-loss
rate is determined uniquely as an eigenvalue of the equa-
tions. In this model, we find Ṁw ≃ 10−4 M⊙ yr−1, which
corresponds to the high end of the observed mass-loss rates.

The density and temperature profiles show rapid decline
around rs (panels b and c). In the supersonic region, density
decreases inversely proportional to the square of radius, ρ ∝
r−2, since the wind velocity is almost constant there. We find
that the radiation pressure dominates the gas pressure over
the supersonic region, while they are almost the same order
of magnitude in the hydrostatic core and subsonic wind.

The luminosity is almost constant (Lph ≃ 1.7 × 106 L⊙)
throughout the wind envelope (panel d). According to the
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Figure 1. Stellar structures of a WN model with M∗ = 48 M⊙,
Z = 1 Z⊙, and D = 1. In each panel, the filled circle shows the
location of the sonic point. Panel a): The velocity structure of
the wind. The purple line shows the wind velocity, the green
line isothermal sound speed, and the grey-shaded region where
v(r ) ≥ vesc (r ) holds. Panel b): The density profile. Panel c): The
temperature profile. Panel d): The luminosity structure. The pur-
ple line shows the total luminosity and the green one the local
Eddington luminosity.

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

105106107

κ 
[ c

m
2  g

-1
 ]

T [ K ]

Figure 2. The opacity structure in the wind envelope of the WN
model with M∗ = 48 M⊙, Z = 1 Z⊙, and D = 1.

mass-luminosity relation obtained from the hydrostatic W-R
models (Langer 1989; Schaerer & Maeder 1992):

log
(

L∗
L⊙

)
= 3.03 + 2.70 log

(
M∗
M⊙

)
− 0.46

(
log

(
M∗
M⊙

))2
, (21)

the stellar luminosity is evaluated as L∗ ≃ 1.85×106 L⊙ with
M∗ = 48 M⊙, which is consistent with our result.

For wind acceleration, the presence of the super-
Eddington layer becomes a key. While the luminosity is
sub-Eddington in the subsonic region, it turns into super-
Eddington beyond the sonic point. At r ∼ 4 R⊙, however, it
returns to sub-Eddington again. Around this point, the wind
acceleration stops and the wind velocity begins to decrease
gradually. The super-Eddington layer is induced by the iron
opacity bump at T ≃ 2 × 105 K, which can be confirmed
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WN models, we suppose that Z̃ is identical with the metal-
licity Z in solar composition (Grevesse & Noels 1993), while
in WC models, the mass fractions of C and O are enhanced
by dXC = 0.4 and dXO = 0.1, i.e., Z̃ = Z + dXC + dXO. In each
model, we consider three different metallicities of Z = 1, 2,
and 4 Z⊙ with Z⊙ = 0.02 the solar metallicity.

Wind Clumping

According to the detailed modeling of WR atmo-
sphere with radiation hydrodynamics, wind clumping
is considered to be indispensable for reproducing the
SED (Hamann & Koesterke 1998). We include this effect
by mimicking the functional form used in Hillier & Miller
(1999). The clump is optically thin and its volume filling
factor fV is

fV(r) = D−1 + (1 − D−1) exp
(
− v(r) − vcl

vcl

)
, v(r) ≥ vcl. (17)

where D is the clumping factor and we fix vcl = 200 km s−1 in
this paper (Hillier & Miller 1999). At v(r) ≥ vcl, the opacity
is modified as κ(ρ,T ) → κ( f −1

V ρ,T ) (Gräfener et al. 2012).
We also consider the case of vcl = 1.1v(rs) ≃ v(rs). In this

case, wind clumping and the opacity enhancement become
effective in the entire supersonic region.

fV(r) = D−1 + (1 − D−1) exp
(
− v(r) − vs

vs

)
, v(r) ≥ vs. (18)

T (105 K)

Teff = T (rph) τ(rph) = 3 vcl ≃ v(rs) D = 100 ρcl = fclρ (19)

dLr

dr
= 4πr2ρϵnuc, fV ≡ Vcl/V ρcl = (V/Vcl)ρ = f −1

V ρ D ∼ f −1
V

(20)

Ṁw,NL ∝ L1.29
∗ Y1.7Z0.5 (21)

v
dv
dr
∼ κLrad

4πcr2 (22)

3 RESULTS

3.1 WN Models without Wind Clumping

First, we show the stellar structure of a WN model with
M∗ = 48 M⊙, Z = 1 Z⊙, and D = 1 (Figure 1). In this model,
the matching point and the sonic point (filled circle) are lo-
cated at rm ≃ 1 R⊙ and rs ≃ 2.5 R⊙, respectively. While the
wind velocity is sufficiently subsonic (v ! 1 cm s−1) around
the matching radius, it is steeply accelerated to a supersonic
speed at the sonic radius (panel a). It finally reaches a con-
stant speed of v∞ ∼ 8 × 107 cm s−1, which is smaller than
the observed wind velocity of WN stars by a factor of a
few (Hamann et al. 2006). In our formulation, the mass-loss
rate is determined uniquely as an eigenvalue of the equa-
tions. In this model, we find Ṁw ≃ 10−4 M⊙ yr−1, which
corresponds to the high end of the observed mass-loss rates.
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Figure 1. Stellar structures of a WN model with M∗ = 48 M⊙,
Z = 1 Z⊙, and D = 1. In each panel, the filled circle shows the
location of the sonic point. Panel a): The velocity structure of
the wind. The purple line shows the wind velocity, the green
line isothermal sound speed, and the grey-shaded region where
v(r ) ≥ vesc (r ) holds. Panel b): The density profile. Panel c): The
temperature profile. Panel d): The luminosity structure. The pur-
ple line shows the total luminosity and the green one the local
Eddington luminosity.

The density and temperature profiles show rapid decline
around rs (panels b and c). In the supersonic region, density
decreases inversely proportional to the square of radius, ρ ∝
r−2, since the wind velocity is almost constant there. We find
that the radiation pressure dominates the gas pressure over
the supersonic region, while they are almost the same order
of magnitude in the hydrostatic core and subsonic wind.

The luminosity is almost constant (Lph ≃ 1.7 × 106 L⊙)
throughout the wind envelope (panel d). According to the
mass-luminosity relation obtained from the hydrostatic W-R
models (Langer 1989; Schaerer & Maeder 1992):

log
(

L∗
L⊙

)
= 3.03 + 2.70 log

(
M∗
M⊙

)
− 0.46

(
log

(
M∗
M⊙

))2
, (23)

the stellar luminosity is evaluated as L∗ ≃ 1.85×106 L⊙ with
M∗ = 48 M⊙, which is consistent with our result.

For wind acceleration, the presence of the super-
Eddington layer becomes a key. While the luminosity is
sub-Eddington in the subsonic region, it turns into super-
Eddington beyond the sonic point. At r ∼ 4 R⊙, however, it
returns to sub-Eddington again. Around this point, the wind
acceleration stops and the wind velocity begins to decrease
gradually. The super-Eddington layer is induced by the iron
opacity bump at T ≃ 2 × 105 K, which can be confirmed
from Figure 2. We find that wind acceleration is initiated
by iron opacity bump as found in Nugis & Lamers (2002);
Gräfener & Hamann (2005)

We consider, however, that the above model is not ap-
propriate as a steady wind solution. This is because in steady
wind solutions, the velocity at the photosphere should ex-
ceed the local escape velocity:

v(rph) ≥ vesc(rph). (24)

Otherwise, the wind velocity will fall down to a subsonic
speed beyond the photosphere, if it were not for additional
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(2000) (Eq. 20).

-4.8

-4.6

-4.4

-4.2

-4

-3.8

-3.6

 5.2  5.4  5.6  5.8  6  6.2

Galactic WC
WN/WC

lo
g 

m
as

s-
lo

ss
 ra

te
 [M

su
n 

yr
-1

]

log L [Lsun]

S 12
Z = 4 Zsun

2 Zsun
1 Zsun

Figure 8. Same as Figure 7, but for the WC case. The filled grey
squares and asterisks show the observed values of the Galactic
WC stars and WN/WC transit types (Sander et al. 2012). Thin
dashed black line is the empirical relation derived in Sander et al.
(2012) (Eq. 21).

In Figure 8, we compare our Ṁw-L∗ relation with the
observed values of the Galactic WC stars and WN/WC tran-
sit types (the filled grey squares and asterisks; Sander et al.
2012). Thin dashed black line is the empirical relation de-
rived in Sander et al. (2012) with Z = 1 Z⊙, dXC = 0.4 and
dXO = 0.1.

log !"
Ṁw,WC

M⊙ yr−1
#
$ ≃ −9.1 + 0.83 log

(
L∗
L⊙

)
, (21)

In this case, we find that our relation has the proportionality
of Ṁw ∝ L1.2∗ Z0.6, which is also consistent with the empirical
relation.

The above proportionality relation Ṁw ∝ L1.15−1.2∗ can
be derived from analytical considerations as well. By defi-

nition, mass-loss rates are determined from Ṁw ≡ 4πr2
s ρsvs

with vs ∝ T1/2
s . Hence, we examiine the dependences of sonic

point quantities on M∗ (or L∗) one by one. First, we find
that the sonic point temperature is almost independent of
M∗ (or L∗) and that it is fixed at Ts ∼ 2.5 × 105 K. This is
because of the strong temperature dependence of the iron
opacity bump. It makes the sonic point to locate at the foot
of the iron opacity bump (see Figure 2). Next, we can see
that the sonic point density ρs hardly depends on M∗ (or
L∗) as well. A sonic point appears at the point where the to-
tal luminosity becomes equal to the Eddington luminosity:
L∗ ∼ 4πcGM∗/κs with κs ≡ κ(ρs,Ts). Since the opacity is pro-
portional to the density around the opacity bump, κs ∝ ρas ,
where a > 0, ρs depends on M∗ and L∗ as ρs ∝ (M∗ L−1∗ )1/a.
But for massive stars, the following mass-luminosity rela-
tion holds: L∗ ∝ M∗ (Kippenhahn et al. 2012), so that ρs
does not depend on M∗ (or L∗). Thus, the dependence of rs
determines that of Ṁw. From Figure 1, we can see that rs is
comparable to the hydrostatic core radius. In fact, we find
that the rs-M∗ relation follows the mass-radius relation of W-
R star models, r∗ ∝ M0.6∗ (Schaerer & Maeder 1992). Hence,
the Ṁw-M∗ or L∗ relation is evaluated as Ṁw ∝ M1.2∗ ∝ L1.2∗ ,
which is consistent with the numerical one.

Note that the metallicity dependence of the mass-loss
rate is also consistent with that derived in the previous stud-
ies (Vink & de Koter 2005). For WN stars, they find the
Ṁw,VK ∝ Z0.86 for 10−3 ! Z/Z⊙ ! 1, and the slope becomes
flatter in higher metallicities. For WC stars, they find the
Ṁw,VK ∝ Z0.4 for 1 ! Z/Z⊙.

5 SUMMARY AND DISCUSSION

In this paper, we construct W-R star models with various
masses, chemical composition, and wind clumping, by mod-
eling them as He star enshrouded in optically thick wind. We
find that W-R winds could be launched by optically thick
wind when either the stellar mass, metallicity, or clump-
ing factor is large. This implies that opacity enhancement
by spectral lines should be important in the supersonic re-
gion to lift the dense winds to have terminal velocity that
exceeds the escape velocity. We also find that the follow-
ing proportionality relation holds in the optically thick wind
Ṁw ∝ L∗ Z0.5, which is consistent with the empirical corre-
lation derived from the least-square fitting of observed val-
ues. This implies that radiative acceleration in the optically
thick region may drive W-R winds, since the stellar struc-
tures within the sonic radius is determined independently of
the wind clumping in the supersonic region.

Our models are not so good in the supersonic region.
The photospheric radius and effective temperature is not so
good.

Wind blanketing. Multiple line scattering. Non-LTE ef-
fect. Clumping.

Relation to GRBs and shock breakout in SN.??
Comparison with previous work who try to construct

core-wind models?? Heger & Langer (1996); Schaerer (1996)
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In Figure 8, we compare our Ṁw-L∗ relation with the
observed values of the Galactic WC stars and WN/WC tran-
sit types (the filled grey squares and asterisks; Sander et al.
2012). Thin dashed black line is the empirical relation de-
rived in Sander et al. (2012) with Z = 1 Z⊙, dXC = 0.4 and
dXO = 0.1.

log !"
Ṁw,WC

M⊙ yr−1
#
$ ≃ −9.1 + 0.83 log

(
L∗
L⊙

)
, (21)

In this case, we find that our relation has the proportionality
of Ṁw ∝ L1.2∗ Z0.6, which is also consistent with the empirical
relation.

The above proportionality relation Ṁw ∝ L1.15−1.2∗ can
be derived from analytical considerations as well. By defi-

nition, mass-loss rates are determined from Ṁw ≡ 4πr2
s ρsvs

with vs ∝ T1/2
s . Hence, we examiine the dependences of sonic

point quantities on M∗ (or L∗) one by one. First, we find
that the sonic point temperature is almost independent of
M∗ (or L∗) and that it is fixed at Ts ∼ 2.5 × 105 K. This is
because of the strong temperature dependence of the iron
opacity bump. It makes the sonic point to locate at the foot
of the iron opacity bump (see Figure 2). Next, we can see
that the sonic point density ρs hardly depends on M∗ (or
L∗) as well. A sonic point appears at the point where the to-
tal luminosity becomes equal to the Eddington luminosity:
L∗ ∼ 4πcGM∗/κs with κs ≡ κ(ρs,Ts). Since the opacity is pro-
portional to the density around the opacity bump, κs ∝ ρas ,
where a > 0, ρs depends on M∗ and L∗ as ρs ∝ (M∗ L−1∗ )1/a.
But for massive stars, the following mass-luminosity rela-
tion holds: L∗ ∝ M∗ (Kippenhahn et al. 2012), so that ρs
does not depend on M∗ (or L∗). Thus, the dependence of rs
determines that of Ṁw. From Figure 1, we can see that rs is
comparable to the hydrostatic core radius. In fact, we find
that the rs-M∗ relation follows the mass-radius relation of W-
R star models, r∗ ∝ M0.6∗ (Schaerer & Maeder 1992). Hence,
the Ṁw-M∗ or L∗ relation is evaluated as Ṁw ∝ M1.2∗ ∝ L1.2∗ ,
which is consistent with the numerical one.

Note that the metallicity dependence of the mass-loss
rate is also consistent with that derived in the previous stud-
ies (Vink & de Koter 2005). For WN stars, they find the
Ṁw,VK ∝ Z0.86 for 10−3 ! Z/Z⊙ ! 1, and the slope becomes
flatter in higher metallicities. For WC stars, they find the
Ṁw,VK ∝ Z0.4 for 1 ! Z/Z⊙.

5 SUMMARY AND DISCUSSION

In this paper, we construct W-R star models with various
masses, chemical composition, and wind clumping, by mod-
eling them as He star enshrouded in optically thick wind. We
find that W-R winds could be launched by optically thick
wind when either the stellar mass, metallicity, or clump-
ing factor is large. This implies that opacity enhancement
by spectral lines should be important in the supersonic re-
gion to lift the dense winds to have terminal velocity that
exceeds the escape velocity. We also find that the follow-
ing proportionality relation holds in the optically thick wind
Ṁw ∝ L∗ Z0.5, which is consistent with the empirical corre-
lation derived from the least-square fitting of observed val-
ues. This implies that radiative acceleration in the optically
thick region may drive W-R winds, since the stellar struc-
tures within the sonic radius is determined independently of
the wind clumping in the supersonic region.

Our models are not so good in the supersonic region.
The photospheric radius and effective temperature is not so
good.

Wind blanketing. Multiple line scattering. Non-LTE ef-
fect. Clumping.

Relation to GRBs and shock breakout in SN.??
Comparison with previous work who try to construct

core-wind models?? Heger & Langer (1996); Schaerer (1996)
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WN models, we suppose that Z̃ is identical with the metal-
licity Z in solar composition (Grevesse & Noels 1993), while
in WC models, the mass fractions of C and O are enhanced
by dXC = 0.4 and dXO = 0.1, i.e., Z̃ = Z + dXC + dXO. In each
model, we consider three different metallicities of Z = 1, 2,
and 4 Z⊙ with Z⊙ = 0.02 the solar metallicity.

Wind Clumping

According to the detailed modeling of WR atmo-
sphere with radiation hydrodynamics, wind clumping
is considered to be indispensable for reproducing the
SED (Hamann & Koesterke 1998). We include this effect
by mimicking the functional form used in Hillier & Miller
(1999). The clump is optically thin and its volume filling
factor fV is

fV(r) = D−1 + (1 − D−1) exp(−(v(r) − b)/b), v(r) ≥ b. (17)

where D is the clumping factor and we fix b = 200 km s−1 in
this paper (Hillier & Miller 1999). At v(r) ≥ b, the opacity
is modified as κ(ρ,T ) → κ(ρ/ fV,T ) (Gräfener et al. 2012).

We also consider the case of b = 1.1v(rs) ≃ v(rs). In this
case, wind clumping and the opacity enhancement become
effective in the entire supersonic region.

T (105 K)

Teff = T (rph) τ(rph) = 3 b ≃ v(rs) D = 100 (18)

3 RESULTS

3.1 WN Models without Wind Clumping

First, we show the stellar structure of a WN model with
M∗ = 48 M⊙, Z = 1 Z⊙, and D = 1 (Figure 1). In this model,
the matching point and the sonic point (filled circle) are lo-
cated at rm ≃ 1 R⊙ and rs ≃ 2.5 R⊙, respectively. While the
wind velocity is sufficiently subsonic (v ! 1 cm s−1) around
the matching radius, it is steeply accelerated to a supersonic
speed at the sonic radius (panel a). It finally reaches a con-
stant speed of v∞ ∼ 8 × 107 cm s−1, which is smaller than
the observed wind velocity of WN stars by a factor of a
few (Hamann et al. 2006). In our formulation, the mass-loss
rate is determined uniquely as an eigenvalue of the equa-
tions. In this model, we find Ṁw ≃ 10−4 M⊙ yr−1, which
corresponds to the high end of the observed mass-loss rates.

The density and temperature profiles show rapid decline
around rs (panels b and c). In the supersonic region, density
decreases inversely proportional to the square of radius, ρ ∝
r−2, since the wind velocity is almost constant there. We find
that the radiation pressure dominates the gas pressure over
the supersonic region, while they are almost the same order
of magnitude in the hydrostatic core and subsonic wind.

The luminosity is almost constant (Lph ≃ 1.7 × 106 L⊙)
throughout the wind envelope (panel d). According to the
mass-luminosity relation obtained from the hydrostatic W-R
models (Langer 1989; Schaerer & Maeder 1992):

log
(

L∗
L⊙

)
= 3.03 + 2.70 log

(
M∗
M⊙

)
− 0.46

(
log

(
M∗
M⊙

))2
, (19)

the stellar luminosity is evaluated as L∗ ≃ 1.85×106 L⊙ with
M∗ = 48 M⊙, which is consistent with our result.
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Figure 1. Stellar structures of a WN model with M∗ = 48 M⊙,
Z = 1 Z⊙, and D = 1. In each panel, the filled circle shows the
location of the sonic point. Panel a): The velocity structure of
the wind. The purple line shows the wind velocity, the green
line isothermal sound speed, and the grey-shaded region where
v(r ) ≥ vesc (r ) holds. Panel b): The density profile. Panel c): The
temperature profile. Panel d): The luminosity structure. The pur-
ple line shows the total luminosity and the green one the local
Eddington luminosity.
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Figure 2. The opacity structure in the wind envelope of the WN
model with M∗ = 48 M⊙, Z = 1 Z⊙, and D = 1.

For wind acceleration, the presence of the super-
Eddington layer becomes a key. While the luminosity is
sub-Eddington in the subsonic region, it turns into super-
Eddington beyond the sonic point. At r ∼ 4 R⊙, however, it
returns to sub-Eddington again. Around this point, the wind
acceleration stops and the wind velocity begins to decrease
gradually. The super-Eddington layer is induced by the iron
opacity bump at T ≃ 2 × 105 K, which can be confirmed
from Figure 2. We find that wind acceleration is initiated
by iron opacity bump as found in Nugis & Lamers (2002);
Gräfener & Hamann (2005)

We consider, however, that the above model is not ap-
propriate as a steady wind solution. This is because in steady
wind solutions, the velocity at the photosphere should ex-
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Ṁw,NL ∝ L1.63∗
In Figure 8, we compare our Ṁw-L∗ relation with the

observed values of the Galactic WC stars and WN/WC tran-
sit types (the filled grey squares and asterisks; Sander et al.
2012). Thin dashed black line is the empirical relation de-
rived in Sander et al. (2012) with Z = 1 Z⊙, dXC = 0.4 and
dXO = 0.1.

log !"
Ṁw,WC

M⊙ yr−1
#
$ ≃ −9.1 + 0.83 log

(
L∗
L⊙

)
, (21)

In this case, we find that our relation has the proportionality
of Ṁw ∝ L1.2∗ Z0.6, which is also consistent with the empirical
relation.

The above proportionality relation Ṁw ∝ L1.15−1.2∗ can

be derived from analytical considerations as well. By defi-
nition, mass-loss rates are determined from Ṁw ≡ 4πr2

s ρsvs
with vs ∝ T1/2

s . Hence, we examiine the dependences of sonic
point quantities on M∗ (or L∗) one by one. First, we find
that the sonic point temperature is almost independent of
M∗ (or L∗) and that it is fixed at Ts ∼ 2.5 × 105 K. This is
because of the strong temperature dependence of the iron
opacity bump. It makes the sonic point to locate at the foot
of the iron opacity bump (see Figure 2). Next, we can see
that the sonic point density ρs hardly depends on M∗ (or
L∗) as well. A sonic point appears at the point where the to-
tal luminosity becomes equal to the Eddington luminosity:
L∗ ∼ 4πcGM∗/κs with κs ≡ κ(ρs,Ts). Since the opacity is pro-
portional to the density around the opacity bump, κs ∝ ρas ,
where a > 0, ρs depends on M∗ and L∗ as ρs ∝ (M∗ L−1∗ )1/a.
But for massive stars, the following mass-luminosity rela-
tion holds: L∗ ∝ M∗ (Kippenhahn et al. 2012), so that ρs
does not depend on M∗ (or L∗). Thus, the dependence of rs
determines that of Ṁw. From Figure 1, we can see that rs is
comparable to the hydrostatic core radius. In fact, we find
that the rs-M∗ relation follows the mass-radius relation of W-
R star models, r∗ ∝ M0.6∗ (Schaerer & Maeder 1992). Hence,
the Ṁw-M∗ or L∗ relation is evaluated as Ṁw ∝ M1.2∗ ∝ L1.2∗ ,
which is consistent with the numerical one.

Note that the metallicity dependence of the mass-loss
rate is also consistent with that derived in the previous stud-
ies (Vink & de Koter 2005). For WN stars, they find the
Ṁw,VK ∝ Z0.86 for 10−3 ! Z/Z⊙ ! 1, and the slope becomes
flatter in higher metallicities. For WC stars, they find the
Ṁw,VK ∝ Z0.4 for 1 ! Z/Z⊙.

5 SUMMARY AND DISCUSSION

In this paper, we construct W-R star models with various
masses, chemical composition, and wind clumping, by mod-
eling them as He star enshrouded in optically thick wind. We
find that W-R winds could be launched by optically thick
wind when either the stellar mass, metallicity, or clump-
ing factor is large. This implies that opacity enhancement
by spectral lines should be important in the supersonic re-
gion to lift the dense winds to have terminal velocity that
exceeds the escape velocity. We also find that the follow-
ing proportionality relation holds in the optically thick wind
Ṁw ∝ L∗ Z0.5, which is consistent with the empirical corre-
lation derived from the least-square fitting of observed val-
ues. This implies that radiative acceleration in the optically
thick region may drive W-R winds, since the stellar struc-
tures within the sonic radius is determined independently of
the wind clumping in the supersonic region.

Our models are not so good in the supersonic region.
The photospheric radius and effective temperature is not so
good.

Wind blanketing. Multiple line scattering. Non-LTE ef-
fect. Clumping.

Relation to GRBs and shock breakout in SN.??
Comparison with previous work who try to construct

core-wind models?? Heger & Langer (1996); Schaerer (1996)

MNRAS 000, 1–8 (2017)

8 D. Nakauchi, H. Saio, & K. Omukai

at log(L∗/L⊙) ≃ 5.6, which corresponds to the model with
M∗ ≃ 16 M⊙.

The proportionality relations in Equations (21) and
(22), Ṁw ∝ L1.15−1.2∗ , can be derived from analytical con-
siderations as well. By definition, mass-loss rates are deter-
mined from Ṁw ≡ 4πr2

s ρsvs with vs ∝ T1/2
s . The temper-

ature at the sonic point is almost independent of M∗ (or
L∗) and is fixed at Ts ∼ 2.5 × 105 K. This is because of the
strong temperature dependence of the iron opacity bump,
which makes the sonic point to locate at the foot of the
bump (see Figure 2). Then, we have the relation Ṁw ∝ r2

s ρs.
Next, we show that the sonic point density ρs hardly de-
pends on M∗ (or L∗). A sonic point appears at the point
where the total luminosity becomes equal to the local Ed-
dington luminosity: L∗ ∼ 4πcGM∗/κs with κs ≡ κ(ρs,Ts).
Since the opacity is an increasing function of density around
the opacity bump, κs ∝ ρas with a > 0, ρs depends on M∗
and L∗ as ρs ∝ (M∗L−1∗ )1/a. But massive stars follow the
mass-luminosity relation: L∗ ∝ M∗ (Kippenhahn et al. 2012),
so that ρs hardly depends on M∗ (or L∗). Thus, we have
Ṁw ∝ r2

s . Figures 1, 6, and 7 show that rs is comparable to
the hydrostatic core radius. In fact, we find that the rs-M∗
relation follows the mass-radius relation of the hydrostatic
WR models, r∗ ∝ M0.6∗ (Schaerer & Maeder 1992). Hence,
the Ṁw-M∗ or L∗ relation is evaluated as Ṁw ∝ M1.2∗ ∝ L1.2∗ ,
which is consistent with the numerical result.

The metallicity dependence of the WR mass-loss was
investigated by Vink & de Koter (2005), who calculated the
radiative acceleration with the Monte Carlo approach. They
found that the WN mass-loss has the Z-dependence of ∝
Z0.86 for 10−3 ! Z/Z⊙ ! 1, while the WC has ∝ Z0.4 for
1 ! Z/Z⊙. In comparison with our results (Eqs. 21 and 22),
the former has the steeper slope, while the latter has the
shallower slope.

5 SUMMARY AND DISCUSSION

In this paper, we have constructed WR star models by
smoothly connecting a hydrostatic He core with a dynam-
ical wind envelope. The effect of the wind clumping is ex-
amined on the basis of the microclumping approach. We
have confirmed that WR winds are accelerated by the opac-
ity bump at ∼ 2 × 105 K that is produced by the bound-
bound transitions of iron, as suggested in the previous stud-
ies. Self-consistent WR models with the steady mass-loss
are obtained only in the case that the wind clumping en-
hances the opacity from the deeper layers in the supersonic
region (vcl ≃ vs), and that the magnitude of the clumping
factor D is larger than 16. The effective temperature of our
model is cooler than that of a He-ZAMS model, so that our
model can reproduce the peculiar locations of observed WR
stars in the HR diagram.

The advantage of our model is that the stellar struc-
ture and mass-loss rate are determined uniquely, once the
stellar mass, chemical composition, and clumping factor are
specified. By calculating WR models with various masses
and chemical compositions, we have derived the mass-loss-
luminosity relations. We find that our relations fall within
the observed range. For WN models, the parameter depen-
dence can be fitted with Ṁw,WN ∝ L1.15∗ Z0.55, which has
the shallower luminosity dependence compared to that often

used in the stellar evolution calculation. On the other hand,
for WC models, it can be fitted with Ṁw,WC ∝ L1.2∗ Z0.6,
whose luminosity dependence is stepper than that of the
empirical correlation. We also find that the supersonic wind
structures and terminal velocities strongly depend on the
magnitude of the clumping factors and the location where
the wind clumping kicks in, while the subsonic structures
and mass-loss rates are hardly affected by them.

It should be noted that in order to obtain appropriate
WR models, the clumping factor should take rather high
values, D ≥ 16. This is because we do not take into account
the enhancement of the radiative line acceleration owing to
the Doppler shift in the wind envelope (Castor et al. 1975).
Hence, the models with large D should be interpreted as ef-
fectively including this effect. In order to obtain more realis-
tic WR structures, however, our model should be combined
with the non-LTE wind model that can treat properly the
iron group line-blanketing and the wind clumping, as was
done e.g., in Gräfener & Hamann (2005).

In this paper, the wind inhomogeneity is treated in
a very simplified manner (the so-called microclumping ap-
proach), i.e., we assume that the wind medium is composed
of optically thin clumps and that the interclump medium
is void. In reality, however, both optically thin and thick
clumps should be present and the interclump medium should
not be void (Oskinova et al. 2007; Šurlan et al. 2012). More-
over, we treat the radius where the wind clumping kicks in
as a parameter. Theoretically, line-driven winds are unstable
against the velocity and density fluctuations so that shocks
and inhomogeneities can be formed in the supersonic re-
gion (Owocki et al. 1988; Sundqvist & Owocki 2013). Even
in the subsonic region, inhomogeneities can be produced by
the turbulent convection caused by the iron opacity bump
near the stellar surface (Blaes & Socrates 2003; Jiang et al.
2015; Grassitelli et al. 2016). In order to understand the
wind inhomogeneity and its relationship with the wind driv-
ing, multidimensional and global radiation hydrodynamical
simulations that cover from the wind driving region to the
highly supersonic region are needed. So far, only 2D and
local 3D simulation have been performed in the supersonic
region and subsonic region, respectively (Dessart & Owocki
2005; Jiang et al. 2015).

A similar approach to us was adopted to model WR
stars in Heger & Langer (1996) and Schaerer (1996). Instead
of solving the EoM, however, they gave the velocity and den-
sity structures of the spherically expanding envelope by the
β-type velocity law. By defining the wind base as the ra-
dius where the velocity takes a certain value (e.g., sound
speed), they evaluated the density and temperature at the
wind base. Then they were used as the outer boundary con-
ditions for the hydrostatic core equations. Schaerer (1996)
applied this approach to the evolution calculation of WR
stars as well. In their models, the mass-loss rate was one
of the model parameters, which are based on the empirical
mass-loss-stellar mass relation derived in Langer (1989b).
Our model is different from theirs in that we solve the EoM
without assuming any velocity laws, and that the mass-loss
rate can be determined uniquely as the eigenvalue of the
equations.
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Summary

根元で星に接続されるような球対称・定常風解を構成した．

輻射圧により星風が駆動され質量獲得を妨げる可能性を調べる.

得られた星風解は全て脱出速度に達することなく減速される解だった.

超大質量星の成長を妨げるような定常的な星風は期待できない.

巨大な質量降着率 下で進化する原始星を考えた.
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2010). Theoretically, radiative feedback from the BH will
make the growth time longer, so that the situation becomes
even worse (e.g., Alvarez et al. 2009; Milosavljević et al.
2009), although the super-Eddington accretion, if it oc-
curred, may help shorten the growth time enormously (e.g.,
Volonteri & Rees 2005; Alexander & Natarajan 2014).

The so-called direct collapse scenario is an alternative
pathway. In this framework, we suppose that a supermas-
sive star (SMS) of ∼ 105 M⊙ forms and collapses directly
to a BH with almost the same mass by the post-Newtonian
instability (e.g., Shapiro & Teukolsky 1983). With the more
massive seeds, the growth time to ∼ 2×109 M⊙ is reduced to
< 0.5 Gyr, below the age of the Universe at z = 7.1 by some
margin.

In a currently favored scenario (Bromm & Loeb
2003), the SMSs are supposed to be formed in
atomic-cooling halos where the H2 formation is pro-
hibited either by photodissociation due to strong far-
ultraviolet radiation (Omukai 2001; Wolcott-Green et al.
2011; Sugimura et al. 2014) or collisional dissociation by a
high-density shock (Inayoshi & Omukai 2012). In such ha-
los, a cloud collapses isothermally at ∼ 8000 K solely by the
atomic cooling (Omukai 2001). Without a major episode of
cooling, the cloud collapses monolithically avoiding signifi-
cant fragmentation until the formation of a protostar at its
center (Inayoshi et al. 2014; Becerra et al. 2015). The high
temperature in the pre-stellar cloud results in the high ac-
cretion rate of Ṁacc = 0.1-1 M⊙ yr−1 onto the protostar ac-
cording to the relation Ṁacc ∼ c3

s /G (e.g., Shu 1977).
Such rapid accretion must be maintained until the cen-

tral protostar grows to ! 105 M⊙ by circumventing the
possible obstacles. For example, in the case of the forma-
tion of ordinary first stars, radiative feedback, including the
photoevaporation of the accretion flows, plays an important
role in terminating their accretion growth and setting the
final mass at a few 10-100 M⊙ (e.g., McKee & Tan 2008;
Hosokawa et al. 2011, 2016; Susa 2013). But, this is not the
case for the SMS formation. With the accretion rate ex-
ceeding a threshold value, 0.03 M⊙ yr−1, the protostellar
evolution changes completely (Hosokawa et al. 2012, 2013).
Once the protostellar luminosity becomes close to the “clas-
sical” Eddington luminosity, LEdd,es = 4πcGM∗/κes where κes
is the Thomson scattering opacity, at a few 10 M⊙, the stel-
lar envelope swells greatly in radius reaching as large as
10-100 AU. With the stellar effective temperature as low
as ∼ 5000 K, UV photons are hardly emitted and radiative
feedback is too weak to halt the accretion. Resembling the
present-day red super-giant stars in appearance, the name
“super-giant protostars” (SGPSs) is coined for the rapidly
accreting stars with the bloated envelopes. It is also known
that the pulsational mass-loss rates from SGPSs are at most
∼ 10−3 M⊙ yr−1, two or three orders of magnitude lower than
the accretion rate (Inayoshi et al. 2013). Thus the pulsation
either would not prevent them growing supermassive.

A radiation driven stellar wind is another possible ob-
stacle for the SGPS growth. Similarly to the local Wolf-
Rayet (WR) stars, which exhibit the mass-loss at the
rates of Ṁw ∼ 10−5-10−4 M⊙ yr−1 in radiation-driven
winds (Gräfener et al. 2012), the SGPSs have luminosities
close to the classical Eddington value. In addition, the SG-
PSs have a layer of density inversion, where the density in-
creases outwardly, near the surface. Although the radiative

luminosity locally exceeds the Eddington value LEdd,local =
4πcGM∗/κ, where κ is the local opacity (Hosokawa et al.
2012, 2013), the hydrostatic equilibrium is still achieved as
the layer is pushed down by the weight of the outer dense
layers (e.g., Joss et al. 1973). If we omit the assumption of
hydrostatic equilibrium and allow the matter to flow, how-
ever, we may find a wind solution blowing from the stellar
surface (Ro & Matzner 2016). If such a stellar wind causes
the significant mass loss, the stellar mass growth via accre-
tion may be stopped at some moment before the formation
of a SMS. To examine such a possibility, we here construct
steady stellar wind solutions launched from the surface of
SGPSs assuming the spherical symmetry. We find that the
radiation pressure force in fact allows the smooth accelera-
tion from the subsonic to supersonic regime. The wind veloc-
ity, however, does not reach the stellar escape velocity since
the acceleration is suddenly over due to the opacity cutoff
below ∼ 104 K. We thus conclude that the stellar wind either
does not prevent the growth of a SGPS and it will eventually
grow to a SMS as long as the rapid accretion is maintained.

The rest of this paper is organized as follows. In Section
2, we describe the basic equations and the method to con-
struct the stellar wind models. In Section 3, we construct
a series of wind solutions passing through the sonic point
smoothly, without considering the connection to the stars
at their bases and classify the solutions. In Section 4, we
present the wind solutions connected to the SGPSs and ex-
amine whether the wind mass-loss occurs from the SGPSs.
Finally, Section 5 is devoted to the summary and discussion.

2 FORMULATION OF OPTICALLY THICK
WIND SOLUTIONS

In this section, we describe the basic equations and boundary
conditions to calculate the stellar wind solutions from SG-
PSs. In Figure 1, we illustrate the situation considered here.
We suppose that the SGPS gains the mass through the geo-
metrically thin accretion disk. Except for the equatorial re-
gion, stellar winds could be launched from the surface by the
radiation pressure force. We do not consider the interaction
between the accretion disk and the wind, for simplicity. As-
suming that the accretion region is small in comparison with
the outflowing region, we consider the steady wind structure
under the assumption of the spherical symmetry.

2.1 Basic Equations

We focus on the formulation valid for the optically thick
winds (Finzi & Wolf 1971; Żytkow 1972; Quinn & Paczynski
1985; Lee 1990; Kato & Iben 1992; Kato & Hachisu 1994;
Nugis & Lamers 2002; Dotan & Shaviv 2012; Ro & Matzner
2016), which is equivalent to assuming that the wind accel-
eration occurs beneath the photosphere as in the case of the
dense WR wind (e.g., Crowther 2007). The basic equations
governing the wind structure are as follows.

First, the equations of motion (EoM) and continu-
ity (EoC) are

v
dv
dr
+

1
ρ

dP
dr
+

GM∗
r2 = 0, (1)
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2010). Theoretically, radiative feedback from the BH will
make the growth time longer, so that the situation becomes
even worse (e.g., Alvarez et al. 2009; Milosavljević et al.
2009), although the super-Eddington accretion, if it oc-
curred, may help shorten the growth time enormously (e.g.,
Volonteri & Rees 2005; Alexander & Natarajan 2014).

The so-called direct collapse scenario is an alternative
pathway. In this framework, we suppose that a supermas-
sive star (SMS) of ∼ 105 M⊙ forms and collapses directly
to a BH with almost the same mass by the post-Newtonian
instability (e.g., Shapiro & Teukolsky 1983). With the more
massive seeds, the growth time to ∼ 2×109 M⊙ is reduced to
< 0.5 Gyr, below the age of the Universe at z = 7.1 by some
margin.

In a currently favored scenario (Bromm & Loeb
2003), the SMSs are supposed to be formed in
atomic-cooling halos where the H2 formation is pro-
hibited either by photodissociation due to strong far-
ultraviolet radiation (Omukai 2001; Wolcott-Green et al.
2011; Sugimura et al. 2014) or collisional dissociation by a
high-density shock (Inayoshi & Omukai 2012). In such ha-
los, a cloud collapses isothermally at ∼ 8000 K solely by the
atomic cooling (Omukai 2001). Without a major episode of
cooling, the cloud collapses monolithically avoiding signifi-
cant fragmentation until the formation of a protostar at its
center (Inayoshi et al. 2014; Becerra et al. 2015). The high
temperature in the pre-stellar cloud results in the high ac-
cretion rate of Ṁacc = 0.1-1 M⊙ yr−1 onto the protostar ac-
cording to the relation Ṁacc ∼ c3

s /G (e.g., Shu 1977).
Such rapid accretion must be maintained until the cen-

tral protostar grows to ! 105 M⊙ by circumventing the
possible obstacles. For example, in the case of the forma-
tion of ordinary first stars, radiative feedback, including the
photoevaporation of the accretion flows, plays an important
role in terminating their accretion growth and setting the
final mass at a few 10-100 M⊙ (e.g., McKee & Tan 2008;
Hosokawa et al. 2011, 2016; Susa 2013). But, this is not the
case for the SMS formation. With the accretion rate ex-
ceeding a threshold value, 0.03 M⊙ yr−1, the protostellar
evolution changes completely (Hosokawa et al. 2012, 2013).
Once the protostellar luminosity becomes close to the “clas-
sical” Eddington luminosity, LEdd,es = 4πcGM∗/κes where κes
is the Thomson scattering opacity, at a few 10 M⊙, the stel-
lar envelope swells greatly in radius reaching as large as
10-100 AU. With the stellar effective temperature as low
as ∼ 5000 K, UV photons are hardly emitted and radiative
feedback is too weak to halt the accretion. Resembling the
present-day red super-giant stars in appearance, the name
“super-giant protostars” (SGPSs) is coined for the rapidly
accreting stars with the bloated envelopes. It is also known
that the pulsational mass-loss rates from SGPSs are at most
∼ 10−3 M⊙ yr−1, two or three orders of magnitude lower than
the accretion rate (Inayoshi et al. 2013). Thus the pulsation
either would not prevent them growing supermassive.

A radiation driven stellar wind is another possible ob-
stacle for the SGPS growth. Similarly to the local Wolf-
Rayet (WR) stars, which exhibit the mass-loss at the
rates of Ṁw ∼ 10−5-10−4 M⊙ yr−1 in radiation-driven
winds (Gräfener et al. 2012), the SGPSs have luminosities
close to the classical Eddington value. In addition, the SG-
PSs have a layer of density inversion, where the density in-
creases outwardly, near the surface. Although the radiative

luminosity locally exceeds the Eddington value LEdd,local =
4πcGM∗/κ, where κ is the local opacity (Hosokawa et al.
2012, 2013), the hydrostatic equilibrium is still achieved as
the layer is pushed down by the weight of the outer dense
layers (e.g., Joss et al. 1973). If we omit the assumption of
hydrostatic equilibrium and allow the matter to flow, how-
ever, we may find a wind solution blowing from the stellar
surface (Ro & Matzner 2016). If such a stellar wind causes
the significant mass loss, the stellar mass growth via accre-
tion may be stopped at some moment before the formation
of a SMS. To examine such a possibility, we here construct
steady stellar wind solutions launched from the surface of
SGPSs assuming the spherical symmetry. We find that the
radiation pressure force in fact allows the smooth accelera-
tion from the subsonic to supersonic regime. The wind veloc-
ity, however, does not reach the stellar escape velocity since
the acceleration is suddenly over due to the opacity cutoff
below ∼ 104 K. We thus conclude that the stellar wind either
does not prevent the growth of a SGPS and it will eventually
grow to a SMS as long as the rapid accretion is maintained.

The rest of this paper is organized as follows. In Section
2, we describe the basic equations and the method to con-
struct the stellar wind models. In Section 3, we construct
a series of wind solutions passing through the sonic point
smoothly, without considering the connection to the stars
at their bases and classify the solutions. In Section 4, we
present the wind solutions connected to the SGPSs and ex-
amine whether the wind mass-loss occurs from the SGPSs.
Finally, Section 5 is devoted to the summary and discussion.

2 FORMULATION OF OPTICALLY THICK
WIND SOLUTIONS

In this section, we describe the basic equations and boundary
conditions to calculate the stellar wind solutions from SG-
PSs. In Figure 1, we illustrate the situation considered here.
We suppose that the SGPS gains the mass through the geo-
metrically thin accretion disk. Except for the equatorial re-
gion, stellar winds could be launched from the surface by the
radiation pressure force. We do not consider the interaction
between the accretion disk and the wind, for simplicity. As-
suming that the accretion region is small in comparison with
the outflowing region, we consider the steady wind structure
under the assumption of the spherical symmetry.

2.1 Basic Equations

We focus on the formulation valid for the optically thick
winds (Finzi & Wolf 1971; Żytkow 1972; Quinn & Paczynski
1985; Lee 1990; Kato & Iben 1992; Kato & Hachisu 1994;
Nugis & Lamers 2002; Dotan & Shaviv 2012; Ro & Matzner
2016), which is equivalent to assuming that the wind accel-
eration occurs beneath the photosphere as in the case of the
dense WR wind (e.g., Crowther 2007). The basic equations
governing the wind structure are as follows.

First, the equations of motion (EoM) and continu-
ity (EoC) are

v
dv
dr
+

1
ρ

dP
dr
+

GM∗
r2 = 0, (1)
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at log(L∗/L⊙) ≃ 5.6, which corresponds to the model with
M∗ ≃ 16 M⊙.

The proportionality relations in Equations (21) and
(22), Ṁw ∝ L1.15−1.2∗ , can be derived from analytical con-
siderations as well. By definition, mass-loss rates are deter-
mined from Ṁw ≡ 4πr2

s ρsvs with vs ∝ T1/2
s . The temper-

ature at the sonic point is almost independent of M∗ (or
L∗) and is fixed at Ts ∼ 2.5 × 105 K. This is because of the
strong temperature dependence of the iron opacity bump,
which makes the sonic point to locate at the foot of the
bump (see Figure 2). Then, we have the relation Ṁw ∝ r2

s ρs.
Next, we show that the sonic point density ρs hardly de-
pends on M∗ (or L∗). A sonic point appears at the point
where the total luminosity becomes equal to the local Ed-
dington luminosity: L∗ ∼ 4πcGM∗/κs with κs ≡ κ(ρs,Ts).
Since the opacity is an increasing function of density around
the opacity bump, κs ∝ ρas with a > 0, ρs depends on M∗
and L∗ as ρs ∝ (M∗L−1∗ )1/a. But massive stars follow the
mass-luminosity relation: L∗ ∝ M∗ (Kippenhahn et al. 2012),
so that ρs hardly depends on M∗ (or L∗). Thus, we have
Ṁw ∝ r2

s . Figures 1, 6, and 7 show that rs is comparable to
the hydrostatic core radius. In fact, we find that the rs-M∗
relation follows the mass-radius relation of the hydrostatic
WR models, r∗ ∝ M0.6∗ (Schaerer & Maeder 1992). Hence,
the Ṁw-M∗ or L∗ relation is evaluated as Ṁw ∝ M1.2∗ ∝ L1.2∗ ,
which is consistent with the numerical result.

The metallicity dependence of the WR mass-loss was
investigated by Vink & de Koter (2005), who calculated the
radiative acceleration with the Monte Carlo approach. They
found that the WN mass-loss has the Z-dependence of ∝
Z0.86 for 10−3 ! Z/Z⊙ ! 1, while the WC has ∝ Z0.4 for
1 ! Z/Z⊙. In comparison with our results (Eqs. 21 and 22),
the former has the steeper slope, while the latter has the
shallower slope.

5 SUMMARY AND DISCUSSION

In this paper, we have constructed WR star models by
smoothly connecting a hydrostatic He core with a dynam-
ical wind envelope. The effect of the wind clumping is ex-
amined on the basis of the microclumping approach. We
have confirmed that WR winds are accelerated by the opac-
ity bump at ∼ 2 × 105 K that is produced by the bound-
bound transitions of iron, as suggested in the previous stud-
ies. Self-consistent WR models with the steady mass-loss
are obtained only in the case that the wind clumping en-
hances the opacity from the deeper layers in the supersonic
region (vcl ≃ vs), and that the magnitude of the clumping
factor D is larger than 16. The effective temperature of our
model is cooler than that of a He-ZAMS model, so that our
model can reproduce the peculiar locations of observed WR
stars in the HR diagram.

The advantage of our model is that the stellar struc-
ture and mass-loss rate are determined uniquely, once the
stellar mass, chemical composition, and clumping factor are
specified. By calculating WR models with various masses
and chemical compositions, we have derived the mass-loss-
luminosity relations. We find that our relations fall within
the observed range. For WN models, the parameter depen-
dence can be fitted with Ṁw,WN ∝ L1.15∗ Z0.55, which has
the shallower luminosity dependence compared to that often

used in the stellar evolution calculation. On the other hand,
for WC models, it can be fitted with Ṁw,WC ∝ L1.2∗ Z0.6,
whose luminosity dependence is stepper than that of the
empirical correlation. We also find that the supersonic wind
structures and terminal velocities strongly depend on the
magnitude of the clumping factors and the location where
the wind clumping kicks in, while the subsonic structures
and mass-loss rates are hardly affected by them.

It should be noted that in order to obtain appropriate
WR models, the clumping factor should take rather high
values, D ≥ 16. This is because we do not take into account
the enhancement of the radiative line acceleration owing to
the Doppler shift in the wind envelope (Castor et al. 1975).
Hence, the models with large D should be interpreted as ef-
fectively including this effect. In order to obtain more realis-
tic WR structures, however, our model should be combined
with the non-LTE wind model that can treat properly the
iron group line-blanketing and the wind clumping, as was
done e.g., in Gräfener & Hamann (2005).

In this paper, the wind inhomogeneity is treated in
a very simplified manner (the so-called microclumping ap-
proach), i.e., we assume that the wind medium is composed
of optically thin clumps and that the interclump medium
is void. In reality, however, both optically thin and thick
clumps should be present and the interclump medium should
not be void (Oskinova et al. 2007; Šurlan et al. 2012). More-
over, we treat the radius where the wind clumping kicks in
as a parameter. Theoretically, line-driven winds are unstable
against the velocity and density fluctuations so that shocks
and inhomogeneities can be formed in the supersonic re-
gion (Owocki et al. 1988; Sundqvist & Owocki 2013). Even
in the subsonic region, inhomogeneities can be produced by
the turbulent convection caused by the iron opacity bump
near the stellar surface (Blaes & Socrates 2003; Jiang et al.
2015; Grassitelli et al. 2016). In order to understand the
wind inhomogeneity and its relationship with the wind driv-
ing, multidimensional and global radiation hydrodynamical
simulations that cover from the wind driving region to the
highly supersonic region are needed. So far, only 2D and
local 3D simulation have been performed in the supersonic
region and subsonic region, respectively (Dessart & Owocki
2005; Jiang et al. 2015).

A similar approach to us was adopted to model WR
stars in Heger & Langer (1996) and Schaerer (1996). Instead
of solving the EoM, however, they gave the velocity and den-
sity structures of the spherically expanding envelope by the
β-type velocity law. By defining the wind base as the ra-
dius where the velocity takes a certain value (e.g., sound
speed), they evaluated the density and temperature at the
wind base. Then they were used as the outer boundary con-
ditions for the hydrostatic core equations. Schaerer (1996)
applied this approach to the evolution calculation of WR
stars as well. In their models, the mass-loss rate was one
of the model parameters, which are based on the empirical
mass-loss-stellar mass relation derived in Langer (1989b).
Our model is different from theirs in that we solve the EoM
without assuming any velocity laws, and that the mass-loss
rate can be determined uniquely as the eigenvalue of the
equations.
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