## 遠方銀河観測の現状



Deep Observational Data in A2744 Hubble Frontier Fields [PI: J. Lotz] Ishigaki et al. (2015)



### Review

- Recent obs. progresses of galaxies up to z~11
  - 1) Galaxy formation: SFRD, dust, morph., popIII cand.
  - 2) Cosmic reionization: History and reionization sources

## Recent Progresses of High-z Star-Forming Galaxy Obs.



- Deep HST and Keck observations in opt and NIR
  - up to z=8.7 (Zitrin+15) and
  - possibly z~11 ? (Oesch+16)

### **Cosmic Star-Formation History**



- Rapid decrease at z>8? More data
- -> Disappearing. Smooth evolution

### Progresses in IR/Submm Obs. with ALMA



- ~50 hour ALMA mapping obs. down to  $S_{1.3mm}$ =35uJy (rms) in HUDF
- Only 5 sources w S/N>6
- Similarly, ASPECS (Aravena+16) and ALMA+HFF (Gonzalez-lopez+16) identify only ~10 sources.

### Dusty Starbursts Do Not Significantly Contribute to SFRDs at z>~4, but z~2



- Dusty starburst contribution to SFR density (SFRD)
  - Larger contribution than optically detected galaxies at z~2
  - No significant contribution at z>~4

### Is the Pop. III Candidate True?



- CR7: z=6.6 LAE w strong Hell1640 emission and no detections of metal lines (Sobral+15)
- [OIII]5007 identified by the IRAC ch1 excess. CR7 is neither popIII nor DCBH (Bowler+16)
- CR7 is probably a type II AGN or a low metalicity galaxy.

## **Evolution of Clumpy Galaxies**



- Merger?? But merger rate evolves by (1+z)<sup>2-3</sup> (Millenium/Illustris simu.).
- Rather consistent with violent disk instability scenario (Keres+05,+09)



Corrected for cosmological SB dimming effects by fitting





### z∼10 Galaxy (Average)

Ono et al. 2012

NASA, ESA, and The Hubble Heritage Team (STScI/AURA)

Illustration (Shogakukan)



## **Galaxy Size Evolution**



- $\Sigma_{SFR}$  increases towards high-z by ~100 times due to the size ev.
- Intensive star-formation in a small vol. -> ISM change.

## High Ionization State of ISM



f<sub>A</sub> [10<sup>-17</sup> erg s<sup>-1</sup> cm<sup>-2</sup>Å<sup>-1</sup>

- f[OIII]/f[OII] ratios of z~2-3 LBGs/LAEs are ~x10-100 higher than SDSS galaxies
  - High ionization parameter, Log(q<sub>ion</sub> /cm s<sup>-1</sup>)~ 8-9.
  - Average ionization parameter increases towards high-z.
  - Very efficient ionizing photon production: young stellar population+low hydrogen mass. → ISM ionization state different from typical low-z galaxies

## High Ionization State of ISM



-0

1540

1545

1550

Rest Wavelength (Å)

1555

- CIII]1909 and CIV1548 detections (Stark+15)
  - Very efficient ionizing photon production: young stellar population
    → different from typical low-z galaxies
- Low HI galaxies? → Helping ionizing photon escape?

#### **COSMIC REIONIZATION**

# Hubble Frontier Fields (HFF)

- 6 clusters by deep Hubble ACS and WFC3-IR imaging (Lotz+16)
- Lensing magnifications for faint galaxies behind the clusters.
- 3 year program spending 840 orbits. Started from fall 2013. (Atek+14,15, Ishigaki+15, Oesch+15, McLeod+15,+16, Livermore+16...)
- On-going. Completed in Sep. Analysis completed in 4/6 clusters



### Mass Models





100-200 multiple images for modeling w parametric lensing package (glafic; Oguri+10)

#### HFF Dropouts at z~6-10

···· β=-2.0

--- β=-2.0  $\beta = -3.0$ 

Cluster

--- β=-2.0  $\beta = -3.0$ 

на.

0.5

Cluster

Parallel

1.0

Parallel ECH.

0.5

0.5

Y105-J125

B=-3.0 Cluster Parallel

1.0

1.0



 127 galaxies at z=6-10 identified by dropout tech., 18 out of which have  $\mu$ >10 (Kawamata+16)



No flattening or break at the faint-end LF. No sig. of feedback effect down to ~-14mag at z~7.

**Evolution of UV Luminosity Density** 



## Constraints on f<sub>esc</sub> and M<sub>trunc</sub>



• M<sub>trunc</sub> >~ -13

•  $\Delta z=3$  (-1/+2) [for Q<sub>HII</sub>=10%-99%] Consistent w kSZ measurements of Planck2016

If the other ionizing sources (excpt. galaxies) give negligible contributions to ion phot. prod.

## Ultra-Deep Subaru NB Imaging Keck Spectroscopy for z=7.3 LAEs



• Lya emitter (LAE) sensitive to neutral IGM: Subaru deep (106 hour integ.) large area survey

- At z=7.3, a comparable Lya lum. depth as previous lower-z (z=3-6) survey (Konno+14).
- However, only 7 sources... ~1/10 of the expected number if no evolution from z=6.6.

#### Accelerated Evolution of Lya Luminosity at z>~7



- Decreasing Lya LFs (and ρ<sub>Lya</sub>) from z=6.6 even to 7.3. Moreover, the Lya LF (and ρ<sub>Lya</sub>) is accelerated at z>~7.
- No accelerated evol. of UV LFs( $\rho_{UV}$ ) at z~7
  - Likely by IGM scattering of Lya (cosmic reionization)
  - $\rightarrow$ the evolution of  $Q_{HII}$  is rapid at z~7



Q<sub>HII</sub> estimates from the accelerated Lya evolution.
 – Prefer moderately low Q<sub>HII</sub> at z~7. Late reionization.

### ON GOING AND FUTURE SURVEYS IN 3 YEARS

### Subaru Hyper Suprime-Cam (HSC) Surevey



c) HSC Builder's blog

- Subaru optical imager Hyper Suprime-Cam (HSC)
  - Subaru/HSC survey has started since March 24, 2014 under the collaboration of JP/US/TW.
  - ~1/3 of observations are completed.



from z=0 to z~4, and increases to z~7

• At z>4, feedback is weaker than those previously thought?

### James Webb Space Telescope (JWST)





- New window for high-z galaxies
  - Galaxy identifications up to z~20
  - Detailed early galaxy properties up to z~10 (w oxygen lines)
- Schedule
  - 2018 Oct. (Launching)
  - 2019 Apr (Cycle 1 start)

## JWST Probes for LAEs



- H Balmer (Ha, Hb) lines at ~2.5-5.0 um
  Indicator of popIII (HeII/Hb)
- Other nebular lines
  - Early galaxies for chemical/dynamical evolution w e.g. [OIII]5007



Dixon & Willott 2014

- JWST/Near Infrared Imager and Slitless Spectrograph (NIRISS) in guide camera
- WFSS mode: 1-2.5um, R~150, in ~4 arcmin<sup>2</sup>
- Simulation for MACS cluster obs in 10hr
  - Identifying 100 LAEs+LBGs at z=5-15

## Square Kilometer Array (SKA)

- So far, no reion 21 cm line detections (LOFAR/MWA)
- SKA epoch of reion (EOR) survey (SKA pre. plan; Hasegawa+16)
  - Shallow 10,000 deg^2 (10hr/pt)
  - Medium 1,000 deg^2 (100hr/pt)
  - Deep 100 deg^2 (1000hr/pt)

→ Cross-correlation btw. HI 21cm and Subaru galaxies SKA1: 2018 SKA(full): mid 2020s





## Summary

- Reviewing recent progresses of high-z galaxy obs.
  - Galaxy formation
    - 1) SFRD: Smooth SFR density evolution towards z~10
      - SFR density negligibly contributed by ALMA (dusty SB) sources at z>4
    - 2) popIII: [OIII]5007 line found in PopIII cand. CR7 is neither popIII nor DCBH
    - 3) Morph: More compact galaxies towards high-z:  $r_e \propto (1+z)^{-1.1}$ Clumpy galaxy fraction peaks at z~2, and decreases towards z~8
    - 4) ISM: High  $\Sigma_{SFR}$ . ALMA [CII]158um deficit and [OIII]88um. Keck CIII], CIV detect. Suggestive of high ionization state.
  - Cosmic reionization
    - <f<sub>esc</sub>>~0.1-0.2
    - No truncation found in LFs. The statics also infers  $M_{trunc} > -13$
    - $\Delta z=3$  (-1/+2) [for Q<sub>HII</sub>=10-99%] consistent w Planck2016
    - Q<sub>HII</sub>(z) of Subaru LAE suggests moderately high HI frac at z<sup>~</sup>7-8
      → Self-consistent picture of reion history and ionizing photons.
  - On-going and future surveys
    - Early HSC:  $M_*/M_h$  ratio upturn(z>~4) Signature of feedback eff. change?
    - JWST observations for z>~10 galaxies (launching in 2018)
    - SKA1 observations for EoR 21 cm (observing from 2018)