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Summary

+ IR EDHEE mass, massH . EEHR, AEVZFHLMNZTEHIENBE

+H(C, EERF(RIBERRR)DRENCHFEDOHILRIEEE
(with 3DEESf [orfi KU ]FA L 22l —2aY)

+ B ¥ mass: a few x 10-100 M. mass7ffi: <0.1MoHV 5>1000ME T?
XKCDMDBFELESH ., V22— 3 R TE(H #2EE. duration) DIKRTFEX
XKHIGHE+TTRY ANNTHVELSIREHY

+ massive tight binary (separation < 10AU) — BH-BH merger(GW)H ER 4
BEIDMEFE-TLNS (F=f2L. THOLE=RITERERRICHH S D, FEALIEFEAER)
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Early Collapse Stage

Omukai & Nishi 1998 1Rt kx#F(RHD) + {LZFEtE
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Early Collapse Stage

The early evolution until the formation of a protostar is relatively
well-established. Full 3D cosmological simulations can follow this.

Yoshida, Omukai & Hernquist (2008)

“run-away”
collapse |
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Also see Omukai & Nishi 98; Abel, Bryan &
Norman 02; O’shea & Norman 07 etc.
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¢+ Formation of wide binaries

Gravitational fragmentation occasionally occurs
in the early collapse stage

+ w/ large separations of ~ 1073 AU or more

(Turk+09; Hirano+14; Stacy+16 etc)
+ About ~5% of primordial clouds? (Hirano+14)
+ Evolve to wide binaries?

s Magnetic fields 0.004 B
Amplified by turbulent dynamo during the collapse?

(Schleicher+10; Sur+10,12; Schober+12;% ‘“"’2 w Gt
Federrath+12; Turk+12; etc). ™ 0001 ERSE TR

...should be also important in the later stage | g 9
(e.g., Tan & Blackman 04; Machida & Doi 13) 0.00! sl




First Stars: How massive?

‘early collapse stage — late accretion stage ‘

Yoshida, Omukai & Hernquist (2008)

A cosmological halo B star-forming cloud
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surrounded by >103 Mg gas envelope



2D RHD + Stellar Evolution

(a) R35 2 1S AEF (b) 26 KIBHE (25 F1K)

TH+11, 12; Hirano et al. 14
(also see Mckee & Tan 08)
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» Acc. rate is significantly reduced by the stellar UV feedback

» Mass accretion is shut off when the stellar mass is ~43 Mg




Protostellar Evolution
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+ The UV feedback operates when the star shrinks
+ When the star shrinks depends on different accretion rates

+ Stellar evolution was followed simultaneously with
RHD simulations in TH11



"Supergiant Protostar”
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With very rapid accretion > 0.01 M. /yr, the protostar never
contracts to reach the ZAMS stage, but continues to expands.

(>ZR: hR<AEE. Blin: S1EEEAGE)
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P2.17 - The final fates of accreting supermassive stars

T. Woods!, A. Heger!, L. Haemmerle?, R. Klessen?, D. Whalen?

(1) Monash University, Monash Centre for Astrophysics, Australia
(2) University of Heidelberg, Institute for Theoretical Astrophysics, Germany
(3) University of Portsmouth, Institute of Cosmology and Gravitation, UK

The discovery of enormous (billion Solar mass) high-redshift quasars challenges our un-
derstanding of the early Universe: how did such massive objects form in the first billion
years? A popular model is the "direct collapse” scenario: An atomically-cooled gas cloud
of primordial composition accretes rapidly onto a single stellar core, ultimately collapsing
through the general relativistic instability after reaching ~ 100, 000 Solar masses and form-
ing an initial supermassive seed black hole. To date, the full evolution of such supermassive
stars, from protostar up to and including relativistic collapse, has not been followed in de-

tail. We present the results of such calculations using the stellar evolution code KEPLER,

incorporating implicit hydrodynamics, GR corrections, and a detailed treatment of nu-
clear burning processes. We find that the final mass converges on the hydrostatic limit of
~ 150,000 Solar masses only at the highest accretion rates. We discuss the response of
the supermassive star to accretion, and the evolutionary state at the time of collapse for a
wide range of accretion rates. Finally, we close by discussing observational prospects.
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ABSTRACT

The formation of supermassive stars (SMSs) via rapid mass accretion and their direct collapse into black holes
(BHs) is a promising pathway for sowing seeds of supermassive BHs in the early universe. We calculate the
evolution of rapidly accreting SMSs by solving the stellar structure equations including nuclear burning as well as
general relativistic (GR) effects up to the onset of the collapse. We find that such SMSs have a less concentrated
structure than a fully convective counterpart, which is often postulated for non-accreting ones. This effect stabilizes
the stars against GR instability even above the classical upper mass limit >10° M., derived for the fully
convective stars. The accreting SMS begins to collapse at the higher mass ‘with the higher accretion rate.
The collapse occurs when the nuclear fuel is exhausted only for cases with M < 0.1 M, yr~—!. With
M =~ 0.3-1 M, yr~!, the star becomes GR unstable during the helium-burning stage at M ~ 2-3.5 x 10° M,
In an extreme case with 10 M, yr—, the star does not collapse until the mass reaches ~8.0 x 10° M, where it is
still in the hydrogen-burning stage. We expect that BHs with roughly the same mass will be left behind after the
collapse in all the cases.

We did it! >#BHIAEE




Forming >100 Pop lll Stars

Pick up a number of the star-forming clouds found in cosmological
simulations (e.g., O’Shea & Norman 07). The later evolution is
followed until the stellar mass is fixed by UV feedback. (Hirano et al. 14, 15)

local 2D radiation-hydro simulations
+ stellar evolution

bipolar
HIl regions




The “Mass Spectrum”
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Stacy+10

Turk+09

Isk Fragmentation
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Fourth star forms
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Inward Migration of Fragments

Fragments can rapidly migrate
Evolution over ~100 yrs inward toward the central star,
causing the burst accretion or merger

fragment

© E. Vorobyov

Fo, Fo D RIZTRILODFRES

Contour: Toomre Q parameter

solid: Q=0.1, dotted: Q=1.0 KIEF DRIV EES
(fromTH et al. 2016) (FIENEBHIrHBADEELHY)



Fragments can merge again
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About 2/3 of the fragments merged away, 1/3 survived via e.g., ejection

Merged fragments typically migrate inward via gravitational torque
over local free-fall timescale
High-mass stars will still form even with lots of fragmentation?



UV feedback + Fragmentation
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Susa+13,14

3R ITRHDETE (HAE 7 & + feedback)
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sink mass
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Stacy+16

Stacy, Bromm, & Lee (2016); ionizing + dissociating feedback,
w/ 1 mini halo, following 5000 yrs with ~1AU resolution (x10 higher)
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Massive tight bmary?

1000 ¢

Stacy, Bromm, & Lee (2016)
100 ¢

1 massive tight binary
13Mg + 14M,
with ~5AU separation

10}

ELEDRDIEEE [AU]

; through 3-body interaction
1 3 (blnary partner swapplng)

0 1000 2000 3000 4000 5000
time [yr]

LIGO GW detection = Massive BH-BH binary
as Pop Il star remnants?

> FEE<AEE (e.g., Kinugawa+14; Hartwig+16;
Inayoshi+16; Dvorkin+16)
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