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Pair-instability supernovae (PISNe)

thermonuclear explosions of very massive stars

He core mass between ~ 60 Msun and ~ 130 Msun
ZAMS mass between ~ 150 Msun and ~ 250 Msun
when there are little mass loss and rotation
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Pair-instability supernovae (PISNe)

thermonuclear explosions of very massive stars
He core mass between ~ 60 Msun and ~ 130 Msun

ZAMS mass between ~ 150 Msun and ~ 250 Msun
when there are little mass loss and rotation

Hirano et al. (2015)
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Pair-instability supernovae (PISNe)

large amount of 56Ni can be produced (but not necessarily!)
nuclear decay of 56Ni = 56Co — 56Fe makes SNe bright

typical core-collapse SNe: ~ 0.05 - 0.1 Msun
Heger & Woosley (2002)

L L L L L O D I B B A | I lllllllll I lllllllll I lllllllll I lllllllll I lllllllll Illl

50 80
0 40 1 9
(] y“—
2 —{60 _
£ >
5 13
é 30— ___._ | o
B C
~ Bl S e —40.9
o 1 3
L ! Q
= 20 4 @

.................................. \__20

10 _
O i — lll‘l_l’—l—l __________________ O

70 80 90 100 110 120 130
helium core mass / solar masses



Pair-instability supernovae (PISNe)

large amount of 56Ni production: very luminous

related to superluminous SNe (SLSNeg)?

no conclusive SLSNe observed yet

Absolute magnitude (mag)

Gal-Yam (2012)
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Pair-instabllity supernovae: summary

thermonuclear explosions of very massive stars
He core mass needs to be between ~ 60 Msun and ~ 130 Msun
ZAMS mass corresponds to ~ 150 Msun - ~ 250 Msun
progenitors should have small mass-loss rates
presumed to appear at low metallicity environment
especially first stars
some of them produce large amount of 56Ni: very luminous
- related to superluminous SNe (SLSNeg)?



Pair-instabllity supernovae: summary

thermonuclear explosions of very massive stars
He core mass needs to be between ~ 60 Msun and ~ 130 Msun
/AMS mass corresponds to ~ 150 Msun - ~ 250 Msun
progenitors should have small mass-loss rates?
presumed to appear at low metallicity environment
especially first stars
some of them produce large amount of 56Ni: very luminous
- related to superluminous SNe (SLSNe)?



PISN progenitors do not have mass loss at all”

evolution of zero-metallicity PISN progenitors in HR diagram
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Luminous RSGs: pulsationally unstable stars!

RSGs with large L/M-ratio are pulsationally unstable
due to the kappa-mechanism activated near the surface

leading to mass loss (Heger et al. 1997, Yoon & Cantiello 2010)

Yoon & Cantiello (2010)
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Pulsations in RSG PISN progenitors?

do RSG PISN progenitors suffer from pulsational mass loss?
if they do, how does it affect them?

Yoon et al. (2012)
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Zero-metallicity non-rotating PISN progenitors

MESA (Paxton et al. 2011, 2013, 2015)
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Pulsations of PISN progenitors during RSGs

Follow evolution with very small time steps (dt <1e-3 year)
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Pulsations of PISN progenitors during RSGs

log Teff (K)
3.670 3.675 3.680 3.685 3.690 3.695
030 T T T 1 1 1
150 Mo O
200 Mo o
0.25 250 M O
linear fit
O
— L O
G 0.20
5 2
©
S 2
© 010 +
:
0.05 A
1
@
0.00 1 1 1 1 1 l.
4650 4700 4750 4800 4850 4900 4950 5000
Teff (K)

unstable when Teff < ~5000 K
n=(-8.30 +0.59) X 10 *Teg + (4.15 £ 0.29)



Relating pulsations to mass loss
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Pulsation-induced mass-loss rates
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Effect of pulsation-driven mass loss on evolution

Mass-10ss history
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mass coordinate (M)

Effect of pulsation-driven mass loss on evolution

Kippenhahn diagram

only surface H-rich layers are lost
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Effect on PISN properties: preliminary LCs

250 Msun model with and without pulsation-driven mass loss
w/0: Mtot=236 Msun, Mcore=125 Msun, Menv=111 Msun

w/ (€=0.1 model): Mtot=164 Msun, Mcore=124 Msun, Menv=40 Msun

56Ni mass = 35 Msun
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Conclusions

Metal-free PISN progenitors can experience large mass loss
H-rich envelope during RSG evolution becomes unstable
pulsation can drive large mass loss
Mmass-loss rates become very high even in metal-free progenitors
PISN progenitors still explode as PISNe
PISNe
progenitors are less massive than previously thought
different light curve evolution
dense CSM can be created by surface pulsational mass loss
PISN + dense CSM = Type liIn SNe (can be very luminous)



