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instability if the gravitational collapse is delayed, a process possi-
ble due to turbulence generated during the virialization of the halo.
If the thermal instability occurs, the cloud can fragment into many
smaller mass clumps instead of forming a single SMS. We therefore
simulate the collapse to determine the likelihood of the outcome be-
ing a monolithic collapse to a single star or fragmentation into a
binary or multiple member system.

2 M E T H O D O L O G Y

We performed a three-dimensional hydrodynamical simulation of
the gravitational collapse of a primordial-gas cloud using the adap-
tive mesh refinement code, ENZO (Bryan et al. 2014). Our main
purpose is to investigate the gas dynamics over a wide range
of the densities (10−21 ! ρ ! 10−7 g cm−3). The cloud initially
has a spherically symmetric density profile enhanced by a fac-
tor f (=1.6) above the critical Bonnor–Ebert (BE) distribution, an
isothermal sphere embedded in a pressurized medium and supported
in marginal hydrostatic equilibrium against gravitational collapse.
According to cosmological simulations (e.g. Wise et al. 2008), at
the centre of a first galaxy with virial temperature "104 K, forming
in an environment where the H2 formation is suppressed, a warm
(T ∼ 8000 K) cloud with ∼105 M⊙ becomes gravitationally unsta-
ble at ρ ∼ 10−20 g cm−3 and collapses. Based on this, we set the
central density and temperature of the cloud to ρc = 1.67 × 10−20 g
cm−3 and T = 8000 K, giving a mass and radius of 1.17 × 105 M⊙
and 10.8 pc, respectively. Although we here do not impose an exter-
nal FUV radiation, H2 is collisionally dissociated for ρ " 10−20 g
cm−3 and T " 6000 K. Note that we neglect the dark-matter grav-
ity since the cloud is already bound by the self-gravity of its gas.
Our simulation box size is (50 pc)3 and refinement is controlled by
insisting that one Jeans length is resolved by at least 64 grid cells
(e.g. Turk et al. 2012). Under this condition, the simulation uses 23
out of the allowed 25 refinement levels, ensuring we are resolved
by the above criteria at all times and giving a limiting resolution of
!0.1 au.

The development of turbulence in the central region of forming
first galaxies has been suggested by numerical simulations (e.g.
Wise & Abel 2007; Greif et al. 2008). In the initial phase of col-
lapse with ∼10−20 g cm−3, the turbulence is still subsonic in the
cloud. To consider the density and velocity perturbations due to the
turbulence, we initially impose a subsonic velocity field (the root
mean square of the velocity is set to 0.1cs) with power spectrum
P(k) ∝ k−4, which corresponds to the so-called Larson’s law for
the contemporary star-forming regions (Larson 1981). To ensure
that the turbulence is adequately resolved, we select the maximum
k-mode value of 1/10 of the number of cells across the cloud.

We consider the non-equilibrium primordial chemistry of 9
species (H, H2, e−, H+, H+

2 , H−, He, He+, and He++) and 13 hy-
drogen reactions selected to reproduce the correct thermal/chemical
evolution of the warm atomic-cooling cloud (reactions 3, 4, 7−10,
12, 15−18, 28, and 32 in table 2 of Omukai 2001). We adopt
the reaction rate coefficients updated by the following studies: 7–
10 (Coppola et al. 2011), 15 (Martin, Schwarz & Mandy 1996),
17 (Stibbe & Tennyson 1999), and 28 (Ferland et al. 1992). The
four helium reactions originally included in ENZO are also present,
although they are not relevant in our calculation. We initially as-
sume a uniform distribution of ionization degree with 10−4 and H2

molecular fraction with 10−7, respectively (e.g. Shang et al. 2010).
At high density, the chemical reactions proceed faster than the cloud
collapse and chemical equilibrium is achieved. To smoothly con-
nect the non-equilibrium chemistry to that of equilibrium, we solve

the chemical network including both the forward and reverse re-
actions for dominant processes. To solve the chemistry equations,
we employ the piecewise exact solution method (Inoue & Inutsuka
2008) instead of the original ENZO solver, which cannot follow the
chemical evolution with high enough density to reach the chemical
equilibrium. For the radiative cooling, we consider atomic cool-
ing (H Lyα, two-photon emission, and H− free–bound, free–free
emission) and H2 cooling (rovibrational line and collision-induced
emission). We also include the suppression of the cooling rate in the
optically thick case by using the optical depth estimated as ρκLc

(e.g. Omukai 2001; Shang et al. 2010), where κ includes the H2-line
opacity and the Rosseland mean opacity considering the H Rayleigh
scattering, the H2 collision-induced absorption, and the H− bound-
free and free–free absorption, and Lc the size of the central core,
which is approximately given by the Jeans length for the spherically
symmetric cloud in the runaway collapse. Finally, note that we do
not include the heating/cooling associated with the chemical reac-
tions because their effect is negligible during the thermal evolution
of the atomic-cooling clouds.

3 R ESULTS

Fig. 1 shows the density distribution at the end of the simulation,
where the central density reaches ∼10−7 g cm−3, for four different
spatial scales; from the top-left clockwise, large-scale gas distri-
bution (∼1 pc), the collapsing core (∼0.1 pc), the central ∼100 au
region, and the protostar formed at the centre (∼10 au). The central
portion of the cloud undergoes the runaway collapse. The turbu-
lence forms filamentary structures that channel material into the
central region (ρ ∼ 10−8 g cm−3), feeding the protostar. The left-
bottom panel presents the density distribution around the protostar.
At the end of this simulation, the protostellar mass reaches ≃1 M⊙
and its radius ≃2 au. These values are consistent with the result
of the stellar-structure calculation by Hosokawa et al. (2012), who
assumed a steady and spherical accretion.

Fig. 2 shows the evolution of mass-weighted radial profiles of
(a) density, (b) temperature, and (c) H2 fraction. During collapse,

Figure 1. Density distribution in the plane through the density peak for
four spatial scales: from top-left, clockwise: the large-scale gas distribu-
tion (∼1 pc), a collapsing core by the H− free–bound continuum cooling
(∼0.1 pc), the central region around the protostar (∼100 au), and the final
protostar (∼10 au).
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