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Figure 7. Time evolution of the radial profiles of the (a) number
density, (b) temperature, and (c) inflow rate (= −4πρvr2) for
the case of MBH = 104 M⊙ and n∞ = 105 cm−3. The radiative
efficiency is assumed to be the trapping model (equation 20). The
The Bondi radius which is determined by the initial conditions is
RB,0 = 2× 1018 cm.

Eddington solution (circle), constant or burst accretion with
! (1− 10) ṀEdd (square). The dashed line is the boundary
of the two accretion modes: MBH,4n∞,5 = 1/

√
2 ≃ 0.71.

3.4 Analytical argument

We find that solutions of the accreting gas on to the BH have
transition to be a super-Eddington phase, which is a steady
and isothermal Bondi solution. We here give a simple ana-
lytical argument to explain the reason and show necessary
conditions for the transition.
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Figure 8. Summary of the results for the deferent BH mass MBH

and number density of the ambient gas n∞. Each symbol shows
the final result for the case; transition to the super-Eddington
solution (circle), constant or burst accretion at the rate of ! (1−
10) ṀEdd (square). The dashed line is the boundary of the two
accretion modes: MBH,4n∞,5 = 1/

√
2 ≃ 0.71.

As we explained in §3.2, the size of the HII region and
Bondi radius is important to determine whether the transi-
tion of an accretion rate happens. In Figure 9, we show the
evolution of the size of the HII region (thick). for the two
cases of MBH = 3× 103 (dashed) and 104 M⊙ (solid), where
n∞ = 105 cm−3. The horizontal thin lines are the Bondi
radius for each BH mass case, where T∞ = 8000 K. For
the lower BH mass case, the ionizing front propagates out-
side the Bondi radius and never shrinks (RHII > RB). Then,
the radiation heating and pressure can affect the gas at the
Bondi radius, which results in strong suppression of the gas
supply and a small accretion rate (see the short-dashed line
in Figure 6). For the higher BH mass, the HII region is al-
ways confined within the Bondi radius (RHII < RB). Then,
the accretion from the Bondi radius cannot halt due to ra-
diation feedback. As a result, the HII region starts to shrink
at t > 105 yr (see Figure 7) and the steady solution with
ṁ ≃ 5500 forms (see the solid line in Figure 6).

The Strömgren radius in an uniform density medium
with n∞ is estimated as

RHII =

(
3Qion

4παrec,Bn2∞

)1/3

, (28)

where Qion(∝ L) is the ionizing photon number and αrec,B

the rate coefficient of H radiative recombination (case B).
For the trapping model (L " LEdd), the maximum value of
the ionizing photon number is Qion,max = LEdd/(h⟨ν⟩) ∝
MBH, where h⟨ν⟩ is the average energy of ionizing photons.
We obtain

RHII,max = 1.75× 1018 M1/3
BH,4 n−2/3

∞,5 T 0.28
HII,4 cm, (29)

where THII,4(= THII/10
4 K) is the temperature inside the HII

region and we set h⟨ν⟩ = 13.6 eV. This value is larger by a
factor of ≈ 2−3 than the actual value (see Figure 9) because
the equation (28) neglects the fact that the density profile
has a steep slope (ρ ∝ r−β ; 0 ! β ! 3/2) within RB. We set
RHII ≈ RHII,max/2. Thus, the necessary conditions for the
transition to the super-Eddington accretion (RHII ! RB) is
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