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Figure 9. Summary of the results for different values of the BH
mass MBH and number density of the ambient gas n∞. Each
symbol indicates whether the final result is hyper-Eddington ac-
cretion (circle), or constant or episodic accretion at the rate of
! (1− 10) ṀEdd (square). The dashed line marks the boundary
between the two accretion modes: MBH,4n∞,5 = 1/

√
2 ≃ 0.71.

The region above the boundary indicates the conditions required
to realize steady hyper-Eddington accretion.

compare these two quantities for MBH = 3× 103 (blue) and
104 M⊙ (red), shown in §3.2. For the lower BH mass case, the
ionizing front propagates outside the Bondi radius and never
shrinks (RHII > RB; blue curves). The radiation heating and
pressure in this case can affect the gas dynamics at the Bondi
radius. Thus, the accretion is suppressed and ṁ ∼ 10 (blue
curve in Fig. 7). For the higher BH mass, the HII region
is always confined within the Bondi radius (RHII < RB; red
curves) and shrinks dramatically at t " 1.5×105 yr (Fig. 10).
As a result, the accretion from the Bondi radius cannot halt
due to radiation feedback, and the accretion flow becomes
steady with ṁ ≃ 5500 (red curve in Fig. 7).

The size of an HII region in an uniform-density medium
with n∞ is estimated as

RHII =

(
3Qion

4παrec,Bn2∞

)1/3

, (26)

whereQion(∝ L) is the ionizing photon number flux (in units
s−1) and αrec,B is the H radiative recombination coefficient
(case B). For the trapping model (L # LEdd), the maxi-
mum value of Qion is LEdd/(h⟨ν⟩) ∝ MBH, where h⟨ν⟩ is
the average energy of ionizing photons. We obtain

RHII,max = 1.8× 1018 M1/3
BH,4 n−2/3

∞,5 T 0.28
HII,4 cm, (27)

where THII,4 ≡ THII/(10
4 K) is the temperature inside the

HII region and we set h⟨ν⟩ = 13.6 eV. This value is larger
by a factor of ≈ 2 − 3 than the actual value (see Fig. 10)
because Eq. (26) neglects the fact that the density profile
has a steep slope (ρ ∝ r−β ; 0 ! β ! 3/2) within RB. We set
RHII ≈ RHII,max/2. Thus, the condition for the transition to
the hyper-Eddington accretion (RHII ! RB) is written as

MBH,4 n∞,5 " 0.64 T 3/2
∞,4 T 0.42

HII,4 (28)

or

ṁ =
ṀB

ṀEdd

" 2.0× 103 T 0.42
HII,4. (29)
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Figure 10. Comparison of the size of the HII region RHII

(solid) and the Bondi radius RB (dashed) for MBH = 3 × 103

(thin blue) and 104 M⊙ (thick red). The ambient gas density is
n∞ = 105 cm−3 and the trapping model of η is adopted. The
Bondi radius is estimated by setting T∞ = 8000 K. For the case
where RHII

! RB (MBH = 104 M⊙), the transition to the hyper-
Eddington accretion phase occurs.

For THII,4 = 4, the critical accretion ratio is ṁ ≃ 3.5× 103,
which agrees well with the numerical simulation (see Fig. 9).

We briefly mention the dependence of our results on the
shape of the radiation spectrum. Here we have assumed a
single power-law (Lν ∝ ν−α; α = 1.5). According to Fig-
ure 9 of Park & Ricotti (2011), which does not include sec-
ondary ionization, for α " 1 the dependence of THII,4 on α
is weak and THII,4 ≈ 4. The overall behavior of the accreting
gas does not change significantly from that by Milosavljević,
Couch & Bromm (2009) with secondary ionization assuming
α = 1.5. Thus, the secondary ionization is negligible at least
for α " 1. For α ! 1, on the other hand, THII,4 " 5 and it
depends on the maximum energy hνmax. In addition, the HII

region temperature would increase by secondary ionization.
As a result, the critical accretion rate could be higher. As we
explain in the next section, however, the radiation spectrum
would be softer and approximated by a thermal spectrum
with Tph ≃ 104 K for cases with ṁ " 3000. In these cases,
the size of the HII region becomes smaller because the value
of Qion is lower by four orders of magnitude than the value
we considered above.

3.5 Inner-region simulations

For the case of the hyper-Eddington accretion flow, we fur-
ther conduct simulations of the inner region, resolving the
trapping radius. Here, we study whether gas and radiation in
the inner region affect or modify the hyper-Eddington solu-
tion of the outer region. As we mentioned in §2.3.2, we have
run several simulations for 0.01 # Lph/LEdd # 1. Since the
choice of Lph is still arbitrary, we attempt to determine the
physically correct value of Lph so that our solution smoothly
connects with a small accretion disk well inside Rtr.

First, we show the results of the inner-region simu-
lation for the hyper-Eddington solution shown in Fig. 8
(MBH = 104 M⊙ and n∞ = 105 cm−3). We here set
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