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We consider radiative cooling processes including bound-
bound transitions of H,He,He+ atoms and free-free emis-
sion (Glover & Jappsen 2007). To estimate the cooling rates,
we solve chemical reaction networks including six species of
H,H+,He,He+,He++ and e−. The abundance of He nuclei
relative to H nuclei is set to 8.33 × 10−2. Here, photoion-
ization, collisional ionization and radiative recombination are
considered (Abel et al. 1997; Glover & Jappsen 2007). Instead
of treating photoionization by diffusive recombination photons,
we adopt the on-the-spot approximation, where case A recombi-
nation rate is replaced by that for case B. To update the chemical
abundances stably, we adopt a semi-implicit method (Anninos
et al. 1997), setting time steps shorter than chemical timescales
defined by tchem ≡ 0.1(xe + 0.001xH)/ẋe, where xe and xH

are the abundance of electrons and neutral hydrogens (Whalen
& Norman 2006, 2008).

We solve the multi-frequency radiative transfer equation, as-
suming that the radiation field is steady because the light cross-
ing time is much shorter than the hydrodynamical timescale,
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(r2Fν) =−ρκνcEν , (9)

where Fν is the radiation flux, Eν is the radiation energy den-
sity and κν is the absorption opacity. Since the ionized gas is
optically thin to electron scattering and bound-free transitions,
Fν ≈ cEν is assumed on the right-hand-side of Eq. (9). The
frequency range is set to hνmin(= 13.6 eV) ≤ hν ≤ hνmax(=

10 keV). The ionization rate coefficients kph of H,He,He+

and photoionization heating rate Γ are calculated following
the photon-conserving manner proposed by Whalen & Norman
(2006). We consider radiation force due to electron scattering
and bound-free absorption of H atoms as
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where ve is the number density of electrons and ΓH is the heat-
ing rate due to H ionization.

2.2 Initial and boundary conditions

To solve basic equations we describe, we adopt a spherically
symmetric coordinate and set a computational domain which
resolves gas around the Bondi radius in order to capture physics
of the onset of hyper-Eddington accretion, namely 10−2 RB ≤
r ≤ 10 RB and 0 ≤ θ ≤ π. We set power-law-spaced grids
in the radial direction: the position of i-th grid center is given
by ri = 0.5(rmi−1 + rmi)+ δr, where rmi = rmin +(rmax −
rmin)((i− 1)/(imax − 1))2 for i ̸= 0, rmi=0 = rmin − (rmax −
rmin)(imax−1)−2, and δr=0.5(rmax−rmin)(imax−1)−2. We
set uniformly-spaced grids in the polar direction. The number
of the grid points is set to (Nr,Nθ) = (100,120). Note that our
simulations do not consider accretion flows within 10−2 RB.
Instead, we assume properties of radiation emitted from the cen-

tral region and discuss gas accretion from larger scales.
As our initial conditions, we set a neutral uniform and static

(v = 0) gas with the gas density n∞ = 105 cm−3 and temper-
ature T∞ = 104 K. We consider several cases for different BH
masses with 103 ≤MBH ≤ 5× 105 M⊙, but the values are as-
sumed to be constant throughout our simulations. We impose
an out-going inner boundary condition for the radial velocity
to be non-positive values and absorption inner boundary condi-
tions for the gas density, gas pressure and velocity to be damped
smoothly (e.g. Kato, Mineshige & Shibata 2004). We set the
same gas density at r = rmax as the initial value, which does
not depend on the polar angle, and impose free outer boundary
conditions for three components of the velocity and the spe-
cific entropy. We further assume the reflection symmetry with
respect to the rotational axis (θ = 0,π), i.e. vθ and vφ are anti-
symmetric and other quantities are symmetric.

To integrate Eq. (9), we simply set a radiation source with a
single power-law spectrum at the center,
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(νmin ≤ ν ≤ νmax) (11)

and Lν = 0 (ν ≤ νmin and νmax ≤ ν), where α = 1.5 is
adopted. The normalization factor L0 is set by the total lumi-
nosity (L =

∫ νmax

νmin
Lνdν). In this Letter, we consider a model

of radiation luminosity emitted from an accretion disk which we
do not resolve here and set the radiation luminosity at the inner
boundary as a function of the accretion rate to

L
LEdd

=

{
2[1+ ln(ṁ/20)] for ṁ≥ 20,

ṁ/10 for ṁ < 20,
(12)

(Watarai et al. 2000), where ṁ ≡ Ṁ/ṀEdd. Furthermore, we
assume anisotropic radiation fields as

Fν(r = rmin,θ) =
(N +1)Lν

4πr2min

cosN θ, (13)

where the radiation flux Fν is normalized so that Lν =∫
FνdΩr

2
min. In this Letter, we explore the effects of the ra-

diation anisotropy N on our simulations; the isotropic radiation
N = 0 (Model A), the anisotropic radiation N = 2 (Model B),
and N =4 (Model C) for MBH =103 M⊙. We also study cases
for higher BH masses with MBH > 103 M⊙ (Model D – I) for
N = 4. Our simulation models are summarized in Table 1.

3 Results
3.1 Anisotropic radiation effects

Figure 1 presents time evolution of the gas accretion rate onto
a BH for Model A (N = 0), B (N = 2) and C (N = 4). For
the case with isotropic radiation, the accretion occurs episodi-
cally and the time-averaged rate is ≈ 0.7 ṀEdd. On the other
hand, for the anisotropic cases, the accretion rates becomes less
episodic and approach steady states. The accretion rates also
tend to increase with the radiation aisotropy of N . For Model


