

High-z Gamma-ray bursts for Unraveling the Dark Ages Mission

HiZ-GUNDAM WG メンバー 代表:米徳大輔(金沢大学)

宇宙理学委員会 (2012/04/06)

2012年1月23日に小型科学衛星WG申請書を提出

■ X線・ガンマ線検出器

河合誠之(東工大)、黒澤俊介(東北大)、郡司修一(山形大)、芹野素子(理研)、 谷森達(京都大)、三原建弘(理研)、村上敏夫(金沢大)、谷津陽一(東工大)、 山岡和貴(青山学院大)、吉田篤正(青山学院大)、米徳大輔(金沢大)

■ 赤外線望遠鏡

沖田博文(東北大)、川端弘治(広島大)、津村耕司(ISAS/JAXA)、 松浦周二(ISAS/JAXA)、柳澤顕史(国立天文台)、 アドバイザ:金田英宏(名古屋大)、和田武彦(ISAS/JAXA)

■ 理論検討

浅野勝晃(東工大)、井岡邦仁(高工ネ研)、井上進(宇宙線研)、 川中宣太(高工ネ研)、諏訪雄大(京都大)、高橋慶太郎(熊本大)、 筒井亮(東京大)、當真賢二(大阪大)、戸谷友則(京都大)、 長倉洋樹(京都大/早稲田大)、長滝重博(京都大)、中村卓史(京都大)、 水田晃(高エネ研)、山崎了(青山学院大)、横山順一(東京大)

■ 衛星システム検討 坂井真一郎(ISAS/JAXA)

34名/17機関

より遠方の GRB を観測は、非常に強い赤方偏移を受けるため、

X線~ガンマ線で検出 自律制御で追観測を開始 可視・近赤外線で赤方偏移を測定

Malhotra & Rhoads '05

Observed wavelength (μm)

観測の流れ

(1)GRB 検出とリアルタイムアラート (2)自律制御で姿勢を変え、数分以内に追観測を開始 (3)近赤外線望遠鏡で粗い赤方偏移の同定 (high-z GRB の同定) (4)ガンマ線スペクトロメータで 3桁に渡る詳細スペクトルの測定

地上大型望遠鏡や JWST と協力して z > 10 のGRB の高分散スペクトルを取得

45cm可視光・近赤外線望遠鏡 可視光CCD (0.4 – 1.0μm) HAWAII2-RG (1.0 – 1.7μm) 低分散分光またはバンド測光

ガンマ線スペクトロメータ BGO + 光電子増倍管 (50keV – 10MeV)

HiZ-GUNDAM

電子追跡型コンプトンカメラ 実現性を検討している

Missing High-Redshift GRBs?

■ high-z で T90 の長いイベントが少ない

Time dilation の効果で必ず継続時間は長くなるはず バーストの明るい部分だけを観測している可能性

■カウントレートでのトリガーだけでは厳しい

継続時間が長く、エネルギー流入はそこそこだが、ピークフラックスが低い

数keVからの低いエネルギーでイメージトリガーが重要

■ 0.5 mm × 64本の両面ストリップCdTe検出器 ■ 同ピッチのタングステンコーデッドマスク

	X線イメージング検出器		
検出器	CdTe両面ストリップ		
エネルギー帯域	4~100keV		
検出器サイズ	0.5mmピッチ coded mask 45cm × 45cmまたはその半分を2台		
有効面積	1000cm2 @10keV (Half Coded)		
方向決定精度	11分角(幾何学的形状から) 5分角(光子統計の重みづけ)		
視野	約2ステラジアン		
重量	50 kg 程度 8		

CALET GBM (SGM)					
の発展型	[1億円+(3	CdTe CGRO/BATSE	
青山学院大学; 6*HXM 4in ø ×0 5in	が開発中 SGM nΦ×3in		Effective Area (cm ²)	BGO/LSO シンチレータ HETE-2/FREGATE	
	ガンマ線ス	スペクトロメー	ータ	1 10 100 1000 Epergy (ke)/)	
検出器	BGO + 光	電子増倍管			
エネルギー帯域	50keV ~	10MeV		X線イメージング検出器と合わせて	
検出器サイズ	直径 5 イン 高さ 3 イン	ンチ νチを 4 台		3桁に渡る広帯域でスペクトルを取得	
有効面積	500 cm2 @ 100 keV			■ several × 10 ⁻⁶ erg/cm2 よりも明るいGRBの	
方向決定精度	無し			スペクトルを 5 – 10%の精度で測定	
視野 約 2π ステラジアン			■ 継続時间の短い short GRB にも対応 (重 1) (重 1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
重量	40 kg 程度	F		(主力派とのコゴンノノンへ) 9	

電子追跡型コンプトンカメラ

WG の活動内で気球実験を行い、 成立性を検討する

HiZ-GUNDAM は数分以内に、100% 近い頻度で追観測

High-z イベントを見逃さないためには、 衛星上に近赤外線望遠鏡を搭載したい

ミッション固有の要求

■ 可動式太陽電池パドル

Sco X-1, Cyg X-1 などの明るくて変動する天体を避ける。 太陽角制限にとらわれず、多くの GRB を追観測する。

■ リアルタイムアラート機能

GRB およびX線トランジェントの発生方向および、粗い赤方偏移を迅速に伝える SDS-1のマルチモード統合トランスポンダや、モバイル電話パケットなど

■ 自律高速姿勢制御

GRBトリガー後、3分程度で衛星姿勢を変更して追観測を実施 近赤外線望遠鏡への熱流入を防ぐように自律制御

■ 姿勢安定度

可視光・近赤外線カメラの1フレーム時間内での擾乱は0.5秒角以下 小型科学衛星1号機 (EXCEED)の技術を見習うなど GRB待機時の観測例 赤外線望遠鏡

■ 赤外線背景放射の揺らぎ (初代星の星形成率と直結)

2.4 マイクロメートル 3.2 マイクロメートル 4.1 マイクロメートル

広視野X線イメージャー

 ■ 超新星爆発の shock break-out
■ 銀河中心BHに落ち込むときの tidal disruption に伴うX 線放射
■ Supergiant fast X-ray transient High-mass + NS のバイナリ
■ 明るい変動天体のX線増光モニター

- ■小型科学衛星 HiZ-GUNDAM を検討している
- GRB を用いて高赤方偏移観測のフロンティアを開拓
- GRB 以外にも 高エネルギー突発天体現象のモニター
- 近赤外線望遠鏡でのサーベイ・モニター観測 (注目するテーマは WG 活動の中で議論する)
- 2010年代後半からはじまる、 マルチメッセンジャー天文学の一躍を担う
- ■現在は国内の研究者のみで WG を構成している。 韓国、アメリカ、欧州の赤外線望遠鏡なども WG の活動の中で国際協力を検討する。

補足資料

ガンマ線スペクトルの Epeak と光度の間の関係 GRB の距離指標として利用

第3のパラメータ luminosity time : T_L = E_{iso}/L_pの導入

 $\frac{L_p}{10^{52} \text{ erg s}^{-1}} = 10^{-3.87 \pm 0.19} \left(\frac{E_p}{1 \text{ keV}}\right)^{1.82 \pm 0.08} \left(\frac{T_L}{1 \text{ s}}\right)^{-0.34 \pm 0.09}$

系統誤差が大きく改善。統計誤差のみで記述が可能かもしれない。

Ia型超新星では測定が難しい z>2の初期宇宙で (Ω_m, Ω_λ)を測定

宇宙論パラメータを測定できる。

No Big 将来の予想 1.4 Bang 1.2 1.0SNe 0,8,0 UV SNAP (WFIRST) TARGET **HIZ-GUNDAM TARGET** 0.6 GRB BAO 0.2 非常に高い(laSNeに匹敵する)精度で 0.8.0 0.2 0.4 0.6 0.8 1.021 Ω_M

GRB およびX線突発天体のアラート

HETE-2, Swift で行われたように、リアルタイムアラートを実現したい

- ·発生方向、発生時間
- ・GRB の明るさ
- ・光学対応天体の明るさと、粗い赤方偏移の情報

マルチモード統合トランスポンダ (衛星間通信機能を有する通信機) JAXA 粟野氏からの情報

SDS-1 で実証 JAXA の中継衛星 (DRTS) とのリレーを実証 現在は 24h どこでも中継できるわけではない

120mmX201mmX291mm 重量 3.6 kg 小型科学衛星1号機にも搭載(使われない予定)

4.1 赤方偏移の分布、記録

Swift が観測したデータに基づいて、単位共動体積あたりの長い種族のバースト 発生率 ($L_{iso} > 10^{50} \text{erg s}^{-1}$)が求められている (Wanderman & Piran 2010)。 もちろん不定性は大きいが一つの指標として

$$\mathcal{R}_{\rm GRB} = \begin{cases} 1.3(1+z)^{2.1} \ {\rm Gpc}^{-3} \ {\rm yr}^{-1}, & \text{for } z \leq 3.0\\ 170(1+z)^{-1.4} \ {\rm Gpc}^{-3} \ {\rm yr}^{-1}, & \text{for } z > 3.0 \end{cases}$$
(4.1)

を用いる事ができる。例えば立体角 $d\Omega_{obs}$ の視野で、赤方偏移が z_0 より大きな バーストが起きる確率は

$$\frac{dN_{\rm GRB}}{d\Omega_{\rm obs}dt_{\rm obs}}(z>z_0) = \int_{z_0}^{\infty} \frac{\mathcal{R}_{\rm GRB}}{1+z} \frac{dV_{\rm c}}{dz d\Omega_{\rm obs}} dz \tag{4.2}$$

と書ける。分母の因子1+zは宇宙膨張で時間間隔が伸びる効果を表す。標準的 な宇宙モデルでは光度距離

$$D_{\rm L} = (1+z) \frac{c}{H_0} \int_0^z \frac{dz}{\sqrt{\Omega_{\rm m} (1+z)^3 + \Omega_{\Lambda}}}$$
(4.3)

を用いて共動体積 Vc の微分を

$$\frac{dV_{\rm c}}{dzd\Omega_{\rm obs}} = \frac{D_{\rm L}^2}{(1+z)^2} \frac{c}{H_0} \frac{1}{\sqrt{\Omega_{\rm m}(1+z)^3 + \Omega_{\Lambda}}}$$
(4.4)

のように表す。ここでハッブル定数は $H_0 = 71 \text{km/s/Mpc}$ 、主に暗黒物質の寄 与による密度パラメータは $\Omega_{\rm m} = 0.27$ 、真空のエネルギーと解釈される宇宙項 は $\Omega_{\Lambda} = 0.73$ ととるのが標準的である。

(4.1) 式で表されるバースト発生率の内、 $L_{iso} > 10^{52.5} \text{erg s}^{-1}$ のものが占める割合は約6%とされる。この見積りを採用して、z > 10の領域まで (4.1) 式を外挿すると、z > 10のバーストで $L_{iso} > 10^{52.5} \text{erg s}^{-1}$ となるものは全天で年間36個、z > 20でも4.7個となる。

z>10は、全天で36イベント/年 z > 20は、全天で4.7イベント/年

HiZ-GUNDAM の視野を1~2ステラジアンとすると、 z > 10のGRB は年間3~6イベント期待できる。

GRBと星形成率

Figure 1. Cumulative redshift distribution of long-duration gamma-ray bursts (GRBs) at z < 4 determined from the second *Swift* BAT catalog with isotropic equivalent luminosities $L_{iso} > 10^{51}$ ergs s⁻¹ (black histogram, see text for source of data). Incorporating the redshift constraints of dark GRBs shifts the distribution over the range indicated by the gray shaded area, and provides a estimate of the intrinsic uncertainty in the observational determination of the distribution. Three simple power-law parameterizations of the ratio $\Psi(z)$ between the GRB and star formation rate densities are shown: a constant ratio with redshift (red line), $\Psi(z) \propto (1+z)^{0.5}$ (blue line), and $\Psi(z) \propto (1+z)^{1.5}$.

Robertson & Ellis (2011)

z > 4 では、 GRBR ~ SFR × (1+z)^{1.5} が良さそう